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Abstract

Climate action failure and extreme weather events are the two most severe global risks today. To
advance automated detection of extreme weather events, we have applied significant modifications
to a novel light-weight context guided convolutional neural network, CGNet, and trained it for
semantic segmentation of tropical cyclones and atmospheric rivers in climate data. In this project,
primary interest was given to tropical cyclones, the most destructive extreme weather events, for
which previous models showed poor performance. We investigated data feature engineering and
augmentation, channel combinations, learning rate modifications, alternative loss functions, and
architectural changes. We specifically chose to focus on recall and sensitivity metrics, in contrast
to previous approaches focusing on IoU (intersection over union), to penalize under-counting and
optimize for identification of tropical cyclones. Overall, we found success in improving these metrics
through the use of weighted loss functions, and identified directions for future research. We hope
to contribute to improved automated extreme weather events detection models, which are of crucial
importance for better attribution, prediction and mitigation of the impacts of climate change.

1 Introduction

Climate action failure and extreme weather are the two most severe global risks today according to the World Economic
Forum [1]. Studies of extreme weather and climate change rely on heuristics or expert judgment to identify weather
events in climate simulations, which lead to discrepancies in their predicted frequency and less accurate attribution
estimates [2]. Automated detection of extreme weather events in observational and simulated data could greatly
accelerate research on the impacts of climate change. Since 2020, deep learning techniques for semantic segmentation
have shown promise for that purpose [2]. However, they so far have relied on complex and heavy architectures with
huge numbers of parameters. A key area of research is the development of lighter-weight architectures for semantic
segmentation of tropical cyclones (TC) and atmospheric rivers (AR) [3].

In this project, we apply the light-weight context guided convolutional neural network, CGNet, to semantic
segmentation for the identification of tropical cyclones in climate data. Input to our algorithm is hand-labeled
climate simulation netCDF4 data with channels that contain key atmospheric variables such as wind speed, moisture
content and atmospheric pressure for different times, latitudes and longitudes. The output is segmentation masks where
each pixel takes a value corresponding to the background, TC, or AR classes.

Specific challenges include the very small dataset size, inherent class imbalance of relatively infrequent extreme events,
unavoidable bias due to human-labeling, and limited capacity of the light-weight network. We report experiments with
different hyperparameters (loss function, learning rate), architecture (upsampling), data augmentation, and feature
engineering. We find that weighted loss functions aimed at compensating class imbalance provide the most
significant improvement on extreme weather events recall.
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2 Related work

Initial inspiration came from ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling
high-precision analyses of extreme weather, by Prabhat et al. [2], 2020, which implements DeepLabV3+ architecture.
This ∼50M parameter model trained on human expert-labeled data achieved an IoU (equation 3) score of 0.24 for TCs,
our primary class of interest. The study is the first to demonstrate that DL models trained on expert-labeled climate data
can effectively perform semantic segmentation on extreme weather patterns. However, the large architecture is costly in
terms of memory, training/inference time, and associated energy use.

Additional work was introduced in Spatio-temporal segmentation and tracking of weather patterns with light-weight
Neural Networks by Kapp-Schwoerer et al. [3]., 2020. This group attempts to perform the same segmentation task
on the same dataset as Prabhat et al., but utilizing the much lighter-weight architecture of CGNet (Figure 2). They
improved on Prabhat et al.’s performance with a IoU score for of 0.34 for TCs, and a relatively low recall of 0.57 for
TCs. This model and these metrics are the baseline performance for our project.

To more deeply understand the CGNet architecture used by Kapp-Schwoerer et al., we referenced the original paper
that introduced the CGNet architecture A light-weight context guided network for semantic segmentation, by Wu et al.
[4]. In searching for solutions to our class imbalance, we referred to various loss functions reviewed in Jadon 2020 [5]:
survey of loss functions for semantic segmentation, to guide our loss landscape experiments. Lastly, we rely on Deep
Learning for the Earth Sciences [6] for general background on applying deep learning techniques to Earth sciences and
to explore training attribution models on weather events.

3 Dataset and Features

3.1 ClimateNet Dataset

Figure 1: Segmentation labels (AR:
yellow; TC: green).

To train our neural network, we used labeled climate data from ClimateNet [7], an
open, community-sourced, human expert-labeled dataset which maps the outputs
of Community Atmospheric Model (CAM5.1) climate simulation runs for 459
time steps from 1996 to 2013. Each example is a netCDF file containing an array
(1152, 768) for one time step, with each pixel mapping to a (latitude, longitude)
point with 16 channels for key atmospheric variables, and one class label. The
dataset is split in a training set of 398 (map, labels) pairs spanning years 1996 to
2010 in the CAM5.1 climate simulation, and a test set of 61 (map, labels) pairs
spanning 2011 to 2013. For learning rate decay, we created a validation set of 56
(map, labels) pairs, which we set aside from the training set spanning 2008-2010
in order to keep the test set consistent with our baseline.

We used the xarray library [8] to analyze and visualize the dataset. A description
of the 16 channels (Table 2) and visuals of two channels with the human-labeled
segmentation map for one data sample (Figure 5). The base model comes with
a built in normalization step that we used in all subsequent model experiments.

The baseline implementation developed by Kapp-Schwoerer et al. utilizes the
following four channels [3]:

1. TMQ: total vertically integrated precipitable water
2. U850: zonal (east-west) winds at the 850 mbar pressure surface
3. V850: meridional (north-south) wind at the 850 mbar pressure surface
4. PSL: atmospheric pressure at sea level.

The output of the model is a (1152, 768) tensor of softmax probabilities for classes ‘0’ for background, ‘1’ for
TC, or ‘2’ for AR. Labels for the supervised learning of this task are segmentation maps, as illustrated in Figure 1.
Importantly, these were hand-drawn by climate scientists as part of a community labeling exercise described in Prabhat
et al., 2021 [2]. Figure 4 illustrates how labels were generated as a consensus between experts.

3.2 Data Engineering

From the existing 16 channels, we engineered new features wind velocity and wind vorticity, which we hypothesized
would allow the model to more directly learn to identify TCs, which are characterized by high wind speeds and rotation.
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Wind speed is the L2 norm of zonal and meridional components of the wind vector field. Wind vorticity is the curl
of the wind vector field around the earth radius axis, a measure of the local rotation [9]. These engineered features
were computed at the 850hPa level to produce new channels WS850 (equation 1) and VRT850 (equation 2), and at
the lowest level to produce WSBOT (equation 1) and VRTBOT (equation 2).

3.3 Data Augmentation

In an effort to reduce overfitting in the relatively small train set, we explored data augmentation techniques. The most
promising involved transforming the image based on longitude. Although we explored random shifting and flipping, we
discovered that random shifts to the longitudinal axis immediately decreased our metrics. We believe this is due to the
importance of geography (relative positioning of continents and oceans) to regional climatic circulation and weather
patterns. Rather than providing additional data, augmentation failed to reflect accurate geographical representations and
was therefore a detriment to learning.

4 Methods

4.1 Baseline Implementation and Performance

We established a baseline by running an implementation [3] of the CGNet architecture. The network was trained for 15
epochs over the ClimateNet training set with a Jaccard loss (equation 5) based on the intersection over union (IoU)
metric for the three classes background, AR, and TC.

In addition to IoU, we are optimizing for recall as a key confusion metric. It is especially important to minimize false
negatives for identification of infrequent events. We find that the baseline prediction for TCs performs a IoU score of
0.34 and recall of 0.57 on the test set (as seen in Table 1). A higher performance on the train set (IoU score of 0.38 for
TCs) indicates the model may also have variance.

A fundamental challenge for climate event identification is the inherent imbalance of the data, since, by definition,
the extreme events we aim to detect are very rare. We conclude from this analysis that our baseline implementation
exhibits very high bias, some variance, and relatively low recall.

4.2 CGNet Architecture

For our baseline, we chose to work with the light-weight CGNet architecture implemented by Kapp-Schwoere et al. [3].
CGNet follows the principle of “deep and thin” and is designed specifically for high-accuracy semantic segmentation
while maintaining a small memory footprint. This is advantageous for reducing training time, memory footprint and
model complexity.

Figure 2: CGNet artchitecture using the CG blocks (figure from Wu et al. 2021 [4])

The basic unit of CGNet is a Context Guided (CG) block, which concatenates the output of normal and dilated
convolutional layers to integrate local and surrounding context respectively. It heavily uses 1x1 convolutions and
then average pooling to further refine the representation using a global context. The CG block reduces the number of
parameters and memory footprint by employing channel-wise convolutions, thus removing computational cost across
channels [4].

In order to facilitate our new methods, we tried including an additional CNN + BatchNorm + ReLU layer to the model
to produce a deeper network that could potentially learn higher level and more complex features. We also experimented
with doubling the final upsampling layer to further increase the size of the output predictions. Both of these attempts
were unsuccessful at significantly increasing our metrics.
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4.3 Loss Functions for Imbalanced Classes

The foremost challenge we faced is the extreme data imbalance inherent to rare weather events. Prahbat et al.,
2021 [2] report 94% of pixels in the ClimateNet data belonging to the background class. We found that TCs represent
only 0.462% of pixels of the entire dataset (and ARs only 5.674 %). This means that a naive model assigning every pixel
to the background class would reach 94% accuracy, while obviously failing at its task. To address this class imbalance,
we set out to experiment with modifying the loss landscape to better account for under-represented classes and improve
performance on rare events such as TC and AR pixels. To that end, we leaned on the review of loss functions in Jadon,
2020 [5]. We selected, implemented, and used the following metrics and loss functions for training.

4.3.1 Metrics

As our problem statement was to identify rare events in climate, we explored performance metrics that would better
represent the model’s capacity to solve that task. Specifically, we value identifying events accurately more than
identifying the exact boundaries of the segmentation hand-labeled by experts. We also aimed at penalizing missing
extreme events more than over-predicting the geographical extent of events. We implemented the following success
metrics:

• Intersection over union: our baseline model was trained to optimize for the IoU metric (equation 3), as usual
for many computer vision problems.

• Sørensen–Dice similarity: or Dice coefficient (equation 4) is a measure of the similarity between class
predictions and ground-truth that is widely used for image comparison.

• Recall or Sensitivity: we devised our training strategy to optimize for this metric as a proxy for the ability to
detect most true positives of the TC class.

Loss functions To optimize for these metrics, we aimed to explore loss functions designed to over-weight rare classes.
We explored and implemented the following:

• Jaccard loss: used by our baseline mode. Computes a derivable prediction of segmentation map IoU from the
softmax probabilities output of the classifier (equation 5)

• Cross-entropy (CE) loss: classicially used in multiple classification problems, helps overweight under-
represented class. We used the pyTorch CE (equation 6) and weighted CE (equation 7) losses.

• Focal Tversky loss: highly tunable loss function which overweighs false positive and negatives as well hard
examples in the data, by introducing a power law parameter γ (equation 8).

• Weighted Jaccard loss: to normalize the relative weights of each class in the IoU estimate, we finally
experimented with a custom loss function inspired by the Jaccard loss (equation 9).

5 Experiments/Results/Discussion

Exploring with learning rates greater (0.1, 0.01) and less (0.0001) than the default learning rate (0.001) negatively
affected IoU and Dice scores. In order to deal with issues of over-fitting, we implemented a new learning rate scheduler
for the Adam optimizer with decay and early termination (implemented in model #2). This proved successful in
reducing the overfitting observed in the baseline implementation.

After the results of our experiments and comparing them for both precision-recall and specificity-sensitivity we found
that both our weighted cross entropy and weighted Jaccard loss experiments, with feature engineering and the learning
rate scheduler performed better than the baseline, and our tests with learning rate scheduling, feature engineering, and
cross entropy loss performed as well or worse then the baseline.

We measured IoU, Dice, precision, recall/sensitivity and specificity both for TC and AR events, but we were specifically
focused foremost on recall, specificity and TC events. TC because they are the more dangerous of the two, and for
recall and specificity because we determined it was better to focus on catching all positives versus other metrics given
the severity of a positive event.

We report the precision-recall graph as well as the sensitivity-specificity ROC curve in Figure 3. Raw data for the
confusion metrics of the key models we trained are reported in Figure 1. We didn’t include data augmentation in this
analysis due to the significant decrease in performance.

We encountered and identified several issues and pitfalls, the first among which was the limited and imbalanced data
which made it difficult to improve on task performance. We found some success however with our experiments on loss
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Figure 3: Precision vs Recall (left) and ROC Curve (Sensitivity vs 1-Specificity, right)

landscapes and functions. Secondly, this was an intentionally light model, which created limitations on complexity and
model capacity.

Lastly, given the climate focus of this neural network and the goal of keeping its resources usage light weight, we
tracked and evaluated our carbon footprint during our experimentations. Based on emissions factors from Lacoste et al.
[10], 2019, and an estimated 40 hours of usage of a Nvidia A100 GPU with 40GB of RAM, we estimated our emissions
for model training at around 6.24 kg CO2e.

6 Conclusion/Future Work

In conclusion, this was a very challenging problem. Because advances in lightweight segmentation are so new (CGNet
was released in 2020), we have found no applications of these novel architectures to climate data so far beyond
the baseline we have reported. The small, biased, and imbalanced dataset made it difficult to produce a successful
model. Our analysis indicates that IoU is a poor performance metric for identifying severe and rare climate events.
Precision-recall have proved to be better indicators since recall prioritizes how many successful predictions were made
for a class given its prevalence. Our results have shown that throwing more computing power at this problem doesn’t
improve the model or result in better performance. Instead, we demonstrated that modifications to the model and
loss function for the task at hand can yield significant improvements. We found relative success by increasing the
performance recall with new learning methods, features and architecture. That being said, with more time, we identified
two key areas we would like to investigate further.

6.1 Future Work: More and Better Data

A critical issue is the excessively limited, imbalanced and biased dataset. While our experimentation with augmentation
did not lead to improved results, likely due to geographical issues, more and better data could help improve learning.
Utilizing much larger observational datasets matched with expert-labels or semi-supervised training could potentially
increase the amount of data available, and improve performance.

6.2 Future Work: Transfer Learning

Lastly, as visible in Figure 4, individual labels seem to be highly subjective. We suspect the subjective human-expert
labeling strategy may lead to high unavoidable bias, which may account for the limited baseline performance. To
try and reduce Bayes error on this task, we would like to explore ways to create better ground-truth segmentation
maps. We have identified a historical database of TCs and extents which may help for that purpose. If this experiment
were to prove tractable, we may be able to use pre-trained baseline weights for transfer learning and generalization to
observational weather data rather than simulations.
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Contributions

Romain Lacombe contributed to dataset identification, exploration and analysis, literature search, baseline evaluation,
features engineering, training on GPU, model training and performance analysis, weighted loss functions, carbon
footprint evaluation, and project organization. Hannah Grossman contributed to environment & AWS setup, loss
function updates, experimentation lead, architecture exploration, up-sampling investigation, project organization, setup
for ablation study, data augmentation, and final video presentation. Lucas Hendren contributed to environment, Colab,
& AWS setup, data Visualization and analytics, data augmentation, initial baseline setup, loss function updates, instance
and debugging support. David Lüdeke contributed to experimentation execution, progressive model experimentation
design, data visualization, precision-recall space exploration, model prediction evaluation, and final video slides. All
authors contributed equally to this report.

Data, Code, and Models

We provide an [online repository] with:

• Our implementation of the CGNet model, building on Kapp-Schwoerer et al. [3].
• Notebooks for download, exploration, and visualization of the dataset, generation of engineered features, and

flexible model training.
• Six models and a baseline ready to be loaded for inference, complete with configuration files, trained weights,

and training and validation evaluation metrics history.
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Appendix

Results

Models: 1: Baseline 2: Learning
rate decay

3: Feature
engineering

4. Cross
entropy

5. Weighted
cross entropy

6. Focal
Tversky

7. Weighted
Jaccard

TC IoU 0.33955127 0.3491679 0.31608774 0.22278776 0.20251324 0.31599551 0.22453519
Dice 0.5069627 0.51760482 0.48034448 0.36439318 0.33681665 0.48023798 0.36672721
Precision 0.45598923 0.53463995 0.49327914 0.71342764 0.21450748 0.37011321 0.23838463
Recall 0.57076677 0.50162175 0.46807083 0.24468465 0.78363352 0.6836551 0.79444291
Specificity 0.99623709 0.99758723 0.99734295 0.99945687 0.98414286 0.9935705 0.98597405

AR

IoU 0.39832633 0.41285328 0.4146876 0.35750965 0.29317686 0.38387118 0.34108058
Dice 0.5697187 0.58442485 0.58626032 0.52671397 0.45342113 0.55477878 0.5086653
Precision 0.54289729 0.5343576 0.54252858 0.68965182 0.30685734 0.44789329 0.37141691
Recall 0.59932803 0.64484427 0.63766037 0.42605401 0.86800497 0.72866865 0.80679887
Specificity 0.97010985 0.96671544 0.96815083 0.98864332 0.88386163 0.94679579 0.91912138

Table 1: Metrics: baseline and 6 selected models we trained.

ClimateNet Dataset

Figure 4: Example image from Prabhat et al. 2021 showing 15 different expert labelings (TC labels in white/yellow
masks seen near the equator; AR labels in pink masks). The background “bluemarble” map included via Matplotlib’s
Basemap library is © NASA [2].
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Figure 5: Channels TMQ, U850 and segmentation labels (AR: yellow; TC: green) for a single example in the ClimateNet
training set, viewed from 35◦N and 80◦W (above) and 35◦N and 100◦E (below).

Channel Description Units
TMQ Total (vertically integrated) precipitable water kg/m2

U850 Zonal wind at 850 mbar pressure surface m/s
V850 Meridional wind at 850 mbar pressure surface m/s
UBOT Lowest level zonal wind m/s
VBOT Lowest model level meridional wind m/s
QREFHT Reference height humidity kg/kg
PS Surface pressure Pa
PSL Sea level pressure Pa
T200 temperature at 200 mbar pressure surface K
T500 temperature at 500 mbar pressure surface K
PRECT total (convective and large-scale) precipitation rate m/s
TS surface temperature (radiative) K
TREFHT reference height temperature K
Z1000 geopotential Z at 1000 mbar pressure surface m
Z200 geopotential Z at 200 mbar pressure surface m
ZBOT lowest modal level height m
LABELS 0: Background, 1: Tropical Cyclone, 2: Athmospheric river -

Table 2: ClimateNet dataset channels and labels [7].
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Equations

Engineered Feature: Wind Velocity

Wind speed is the L2 norm of the zonal and meridional components of the wind vector field:

ws =
√

u2 + v2 (1)

Engineered Feature: Relative Wind Vorticity

Wind vorticity is the rotation of the wind vector field, where λ = longitude and ϕ = latitude.

ζ =
∂u

∂λ
− 1

cosϕ

∂v cosϕ

∂ϕ
(2)

Metrics & Loss Functions

Here we present the cost functions for a single sample. Formalism: y = yij is a one-hot encoded ground truth tensor
for the 3 classes over latitude and longitude (i, j), and ŷ = ŷij is the 3-classes probabilities tensor computed as the
softmax of the logits predicted by the network. Parameters are wC , the tensor of weights used to overponderate
imbalanced classes, and β and γ, scalars which allow for the tuning of relative weights of false positives and false
negatives and of hard examples in the focal Tversky loss. All operations here are element-wise.

INTERSECTION OVER UNION =
|X ∩ Y |
|X ∪ Y |

(3)

DICE LOSS(y, ŷ) = 1− 2yŷ + 1

y + ŷ + 1
(4)

JACCARD LOSS = 1− |X ∩ Y |
|X ∪ Y |

= 1− ŷy

(ŷ + y)− ŷy
(5)

CROSSENTROPY LOSS(y, ŷ) = −y log(ŷ) (6)

WEIGHTED CROSSENTROPY LOSS = −wCy log(ŷ) (7)

FOCAL TVERSKY LOSS(y, ŷ) =

(
1− yŷ

β(1− y)ŷ + (1− β)y(1− ŷ)

)γ

(8)

WEIGHTED JACCARD LOSS = 1− wC
ŷy

(ŷ + y)− ŷy
(9)
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Segmentation Results

Figure 6: Final results visualizations, displaying the ground truth labels at the top, then the prediction masks produced
by the baseline and 5 of our models. The first row of globes shows North America and the second row shows Eurasia.
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