
European Soccer League Outcome Predictor

Sang Ahn
Graduate School of Business

Stanford University

Stefan Elbl Droguett
Graduate School of Business

Stanford University

Saman Tabatabaee
School of Medicine
Stanford University

Abstract

We build a predictor for the result of soccer matches in the Top 5 European Leagues.
We present different models that vary in complexity and track their accuracy.
Introducing player level data marginally improves the accuracy compared to our
baseline model. We identify draws as the main factor that reduces the accuracy of
our results and explain our rather unsuccessful attempts to remedy this problem.

1 Introduction

Towards the end of the 2021-2022 season, Liverpool FC was two games away from achieving an
unprecedented feat: winning the quadruple . They were already champions of England’s two domestic
cups, and were two wins away from the English league and the Champions League, Europe’s most
prestigious club title. However, luck was not on their side, and what was once a team that instilled
fear in their rivals is now at the middle of their domestic table, not qualifying for any European cups
this tournament and with a performance that has shocked the experts who considered them a strong
contender for all of the competitions they were in at the start of the year. Had one asked any football
fan on the street about their expected performance for this coming year, they would have most likely
stated their preference for them. How could have anyone predicted the disaster they are living in
now? The previous case serves as the motivation for our project: Creating a predictor of football
matches.

To carry our task, we consider team level data and player characteristics for each team as inputs.
The former refers to composite scores such as ELO1, how well the team has performed in previous
matches2, offensive and defensive forms3 and the pre-game betting odds from Bet365. At the player-
level, we use data from the FIFA videogames for each respective season to characterize each player
with 34 features that track offensive and defensive performance. Each of these features corresponds
to a score between 1 and 99 (higher is better) and is updated biannually. Examples of those features
are: short passing accuracy, sprint speed, acceleration, balance and shot power. The output of our
model is a prediction of whether the match will end as a win, draw, or loss for the home team.

Initially, we construct a baseline model that only compares the ELO of both teams through a soft
regression, which is used as a reference of comparison for our main model. Afterwards, we add
player level data to construct a fully connected neural network with 5 hidden layers, each with leaky

1Competitive score metric that tracks how "good" a team is compared to their peers
2For simplicity, we focus on how many wins, draws and losses they had in their previous 5 matches
3How many goals they have scored/received in the last matches

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



ReLU activation functions and an output layer with softmax. We apply dropout for regularization and
mini-batch gradient descent for computational efficiency. We also utilize Adam optimizer instead of
standard gradient descent.

2 Related work

Given the popularity of soccer and the potential profitability of accurate predictions in sports betting,
there have been previous attempts to predict football match outcomes using machine/deep learning
methods. For instance, Hukalijuk and Rakipovic [1] use data from the UEFA Champions League to
predict match outcomes and compare the performance of various learning algorithms. Out of Naive
Bayes, Bayesian Networks, LogitBoost, KNN, Random Forest (RF), and ANN, they conclude that
ANN performs best. Timmaraju et al. [2] use data from the English Premier League (EPL) and focus
on feature selection rather than learning algorithms. Their results suggest that using temporal gradient
k-past performances (TGKPP) to choose features improves prediction accuracy. In another report by
Rodriguez and Pinto [11], feature selection based on Support Vector Machines (SVM) seems to give
the highest accuracy prediction (61%) for EPL data. However, other methods such as ANN and RF
produce a general accuracy between 50% and 60% accuracy, with better clustering of wins and losses
(50% - 90%) and struggling in predicting draws (<30%). Similarly, Baboota and Kaur [4] explore
various combinations of feature engineering methods and learning algorithms using data from the
EPL. They conclude that gradient boosting, a learning algorithm that performs feature selection by
itself, shows best performance.

In general, the state-of-the-art approach for soccer match prediction seems to come from more
clustering techniques than neural network approaches, with an emphasis on finding features that
can describe the variance in the outcome. In contrast to these papers, Shin and Gasparyan [3] use
virtual data from a video game (FIFA 15) to predict actual match results in the Spanish La Liga with
K-means clustering. They find that the performance is comparable and sometimes even better than
predictions based on actual data. The incorporation of explicit player data and its higher accuracy
(>70%) motivated us to apply a neural network approach to this input format for our main model.
Previously, Nivetha et al. [5] use EPL data and apply an RNN-based approach to predict match
outcomes. Specifically, they use LSTM (long short-term memory) and demonstrate that it outperforms
traditional machine learning algorithms and ANNs. Since player data increases the dimensions of
the input vector, we decided to use a traditional ANN model, and if successful, then expand it to an
RNN-approach for future work.

3 Dataset and Features

We mainly rely on data obtained from Kaggle. The "European Soccer Database" from Kaggle includes
data from top-tier soccer leagues in eleven European countries (Belgium, England, France, Germany,
Italy, the Netherlands, Poland, Portugal, Scotland, Spain, and Switzerland) from the 2008/2009
season to the 2015/2016 season. It has data on approximately 25,000 matches, 300 teams that took
part in those matches, and 10,000 players who played on those teams. At the match level, it tells us
the number of goals scored by each team and the players who started the game. It also has pre-match
odds for home team win, draw, and home team loss from various betting companies, but we only keep
the odds from Bet365 which has the largest coverage. This part of the data is based on information
from online sports betting websites. At the player level, it contains 34 features for each player which
are related to the player’s various skills such as passing, offense, and defense. The player attributes
are obtained from EA’s FIFA video games, who provide biannual updates on these metrics based on
actual results in the real world.

We restrict our attention to the big 5 leagues (England, France, Germany, Italy, and Spain) because
they receive the most extensive media coverage and thus they are more likely to have full and accurate
information. Also, big leagues are systematically different from smaller leagues due to their spending
power and the presence of superstar players. After discarding the smaller leagues and matches with
insufficient information, we are left with 12,633 matches. We use 73.64% of the sample (9304
matches) as the training set (08/09-13/14 season), 13.38% (1690 matches) as the development set
(14/15 season), and 12.97% (1639 matches) as the test set (15/16 season). Figure 2 in the Appendix
shows the number of matches by season in our final data set.

2



We complement the Kaggle data with ELO scores from clubelo.com. ELO ratings are a method for
calculating relative skill levels in competitions. It was originally developed for use in chess but has
been used extensively in other sports such as soccer, baseball, and basketball. The difference in ELO
scores between teams serve as a predictor for the outcome of the match; the greater the difference,
the higher the probability that the high-ELO team will win. After each game, the winner takes ELO
points from the loser and a team can gain more points by winning against opponents with higher
ELO ratings. Thus, a team that is under-rated or over-rated in terms of ELO quickly converges back
to a rating that reflects their true level.

Figure 3 in the Appendix shows descriptive statistics for team-level features. Home (away) team
match form is based on the home (away) team’s results in the last five home (away) games. We award
1/0/-1 points to wins/draws/losses and compute the sum. For example, a match with a home team
that has won four out of the past five home games and lost the other would have a home team match
form of 3. Home (away) team offensive form is the sum of goals scored by the home (away) team in
the last five home (away) games. Home (away) team defensive form is the sum of goals conceded
by the home (away) team in the last five home (away) games. B365H/B365D/B365A are pre-match
betting odds from Bet365 and respectively indicate the odds for a home team win/draw/home team
loss(=away team win). In our analysis, we take the inverse of the odds to make them more like
probabilities.

Figure 4 in the Appendix shows the list of player features that we use. Although there are actually
748 player level features for each match with 34 features per player, 11 players per team, and 2 teams
per match, we take the average of player features for each team to reduce the number of features and
increase processing speed. Thus, we have 68 player features per match with 34 for home team and 34
for away team. For brevity, we do not include the descriptive statistics for player features. In sum, for
each match, we have 79 features (11 team level features and 68 player level features).

4 Methods

For the loss function, we use the standard categorical cross-entrophy loss function for soft-max
problems: L = −

∑
r∈{W,D,L} yrlog(ŷr), where r is each of the possible results from the perspective

of the home team: win, draw, or loss. We decided on this function since we are concerned with higher
accuracy. The function punishes the algorithm every time it mislabels an example.

Our output layer uses a soft-max activation function with 3 labels. It takes output of the last hidden
layer (Lk, dimension m× nk with nk being the number of neurons in last hidden layer), and returns
the predicted probabilities of a home team win, draw, and a home team loss. We randomly generate a
weight matrix (W , dimension nk × 3) and a bias vector (b, dimension 1× 3, addition below carried
out with broadcasting) from a multivariate standard normal distribution and multiply them by a small
number to reduce their magnitude. Then we calculate the probability of each match for being a win,
draw or loss. Formally:

Z = LkW + b , σ(Zi) = P[Result being i] = ezi∑
r∈{W,D,L} ezr

We then introduce 5 hidden layers with leaky ReLU activation functions. Each layer has weight
matrices W1,W2,W3,W4,W5 and bias vectors b1, b2, b3, b4, b5. The leaky ReLU function takes the
form Z = max{ηz, z}, with η being a hyper-parameter. We use leaky ReLU as opposed to standard
ReLU because it never has zero slope and thus could help speed up learning and prevent problems
with vanishing gradients.

For the final output, we obtain a (m, 3) vector of probabilities. For each training examples, we have a
(1,3) probability vector that sums to one. We identify whichever label among win, loss, and draw has
the highest probability take that label as the predicted label.

Assuming we are using a standard gradient descent, our strategy for back-propagation would be as
follows. In the output layer, dW = 1

mL′
5(σ(Z) − Y ) and db = 1

mΣ(σ(Z) − Y ) where L5 is the
output of the fifth hidden layer , Y is the one-hot encoded version of the true label vector, and Σ
is summation within the same column. For dL5, we take dL5 = (σ(Z) − Y )W ′ and multiply an
element by η whenever an element with the same index in L5 is less than 0 (non-linearity of leaky
ReLU). dW , db, and dL5 have the same dimensions as W , b, and L5. In the fifth hidden layer,
dW5 = 1

mL′
4dL5 and db5 = 1

mΣdL5. For dL4, we take dL4 = dL5W
′
5 and multiply an element by

3



η whenever the element with the same index in L4 is less than 0. We repeat the process for the fifth
hidden layer for earlier layers until we obtain dL1, dW1, and b1. Finally, we update the W s and bs
according to W = W − αdW and b = b − αdb where α is a hyper-parameter that represents the
learning rate.

However, for more efficient updating of gradients, we rely the ADAM algorithm instead of standard
gradient descent in our model. For ADAM we define four additional auxiliary variables: Vdw, Vdb,
Sdw and Sdb. All of them are initialized to zero. They are updated according to the following:

Vdw = β1Vdw + (1− β1)dW , Vdb = β1Vdb + (1− β1)db
Sdw = β2Sdw + (1− β2)dW , Sdb = β2Sdb + (1− β2)db

V corresponds to the "momentum" of the gradients and S corresponds to the RMS-Prop component.
For each epoch they are "corrected" from the distortion the mini-batch could create according to:
V Corrected
di = Vdi

1−βt
1

and SCorrected
di = Sdi

1−βt
2

with i ∈ {W, b}. Finally, W and b are updated according to:

W = W − α
V Corrected
dw√

SCorrected
dw +ϵ

, b = b− α
V Corrected
db√

SCorrected
db +ϵ

with ϵ being a small positive number.

5 Experiments/Results/Discussion

In order to obtain the best performance from our algorithm, we performed tests over different sets
of hyper-parameters. Our criteria was to prioritize those combinations that yielded higher accuracy
(our primary evaluating metric) without taking too much time to train and run the model. Our key
hyper-parameter was the learning rate for ADAM. Lower learning rate led to lower oscillation around
the convergence point (higher accuracy) but also resulted in slower convergence which would require
us to increase the number of epochs. Thus, we experimented randomly among a host of numbers
on log-scale to find the optimal learning-rate. Other parameters for ADAM did not seem to have
much impact on accuracy or processing time, so we just used the default values from Tensorflow
Keras. Similarly, η (leaky ReLU parameter) did not seem to have much effect either. We found that
having more than 5 layers or 100 neurons per layer decreased processing speed without improving
performance. Overfitting didn’t seem to be much of an issue in our data and increasing the dropout
rate seemed to result in slower convergence. Having a mini-batch size that is too high or low relative
to the full batch size (9,304 training examples) led to longer processing time.

Finally, we chose the following set of hyper-parameters: 5 hidden layers with 64 neurons each,
learning rate of 10−6, β1 of 0.9, β2 of 0.999, ϵ of 10−7, η of 0.1, drop-out rate of 0.2, mini-bath size
of 256, and 10,000 epochs. In Table 1 below, we tabulate the accuracy of a baseline model (which
uses just ELO scores as input features and relies on softmax with no hidden layers) and the main
model for each of the data sets. In Figure 1 below, we show the confusion matrix. In Figure 5 in the
Appendix, we plot how the value of the loss function and accuracy evolve over epochs.

Data Set Acc Baseline (%) Acc Main (%)

Train 46.92 51.95
Dev 47.63 53.20
Test 45.62 50.46

Table 1: Accuracy of our algorithm for Each Data Set and Model

Unsurprisingly, the main model outperforms the baseline model. However, Table 1 indicates the
improvement over the baseline model is not as large as we expected. The confusion matrix in Figure
1 reveals that our model has difficulty in predicting draws. We hypothesize that this is because the
nature of draws is much more random than that of wins and losses. Furthermore, if we consider the
accuracy of our model on the test set conditional on the match not being a draw, we obtain a 68.18%
accuracy, which lends credit to the idea that our model works in most occasions and that there is an
inherent component in draws which is lowering our accuracy.

In order to remedy this problem, we create alternative models that deal with draws specifically. To
reduce training time, we use a learning rate of 10−5 and 1,000 epochs in the subsequent models.

4



Figure 1: Confusion Matrix

In our first supplementary test, we train a second model that predicts draws versus non-draws by
relabelling wins and losses into non-draws. We modify the output of our main model when the second
model predictor predicts a draw. However, the predictor only returns non-draws, presumably because
draws occur so randomly and the fully connected neural network cannot find a way to learn to predict
them. The evolution of loss and accuracy for this model over epochs are plotted in Figure 6 in the
Appendix.

In our second supplementary test, we train two models: a third model for predicting losses versus
non-losses (relabel home team wins and draws into non-losses) and a fourth model for predicting
wins versus non-wins (relabel home team losses and draws into non-wins). We change the output of
the original model into a draw only when the third model predicts a non-loss and the fourth model
predicts a non-win. The evolution of loss and accuracy for these model over epochs are plotted in
Figure 7 and Figure 8 in the Appendix. While this increases the instances of draws in our prediction,
it does not increase accuracy significantly. Based on the figures, the evolution of the main model is
most similar to the one of the home loss versus non-loss model. This seems to suggest that non-losses,
which include both draws and wins, and pure wins share similar characteristics and confuse the
model. We conjecture that this is the reason our model fails to predict draws and loses accuracy.

6 Conclusion/Future Work

We develop a soccer game result predictor. Using a database of matches in the top 5 European
Leagues between the 2008/2009 and 2015/2016 seasons, our model reaches a 50.46% accuracy in
our test set, which is greater than the 33.34% of pure chance. Our model shows that including data at
the player level increases the accuracy in comparison to using the team’s ELO score as a composite
metric, albeit not by a significant amount. Our results validate the usage of player-level data to predict
soccer match outcomes and provide a promising venue.

The main shortcoming of our model is that it fails to predict draws. This problem is not unique to
our model and has been a recurrent issue in the literature on soccer match prediction. For instance,
Baboota and Kaur [4] use linear SVM (support vector machines) to predict soccer match outcomes
and also find that the algorithm fails to predict draws. When we exclude draws from our test sample,
our model reaches 68.18% accuracy. We provide alternative models to account for this phenomenon,
and while one of them yields draw predictions, it does not recognize draws in a sufficiently robust
manner as to increase accuracy. A venue for future work would be to develop better algorithms that
better predicts draws. Our analysis indicates that draws seem to be more random in their nature
relative to losses and wins.

7 Contributions

While all of the members contributed in each of the project’s different tasks, there was one member in
charge of each different task: Sang was in charge of data collection and developing the main model
with player data, Stefan was in charge of the baseline model and writing, and Saman was in charge of
data visualization and literature review.

5



References

[1] Hucaljuk, J., & Rakipović, A. (2011, May). Predicting football scores using machine learning techniques. In
2011 Proceedings of the 34th International Convention MIPRO (pp. 1623-1627). IEEE.

[2] Timmaraju, A. S., Palnitkar, A., & Khanna, V., “Game ON! Predicting English Premier League Match
Outcomes”

[3] Shin, J. & Gasparyan, R., “A novel way to Soccer Match Prediction”.

[4] Baboota, R., & Kaur, H. (2019). Predictive analysis and modeling football results using machine learning
approach for English Premier League. International Journal of Forecasting, 35(2), 741-755.

[5] Nivetha, S. K., Geetha, M., Suganthe, R. C., Prabakaran, R. M., Madhuvanan, S., & Sameer, A. M. (2022,
January). A Deep Learning Framework for Football Match Prediction. In 2022 International Conference on
Computer Communication and Informatics (ICCCI) (pp. 1-7). IEEE.

[6] Mathien, H. (2016) European Soccer Database. Kaggle Link

[7] Chollet, F. & others, (2015). Keras. Available at: https://github.com/fchollet/keras.

[8] McKinney, W. & others, (2010). Data structures for statistical computing in python. In Proceedings of the
9th Python in Science Conference. pp. 51–56.

[9] Harris, C.R. et al., 2020. Array programming with NumPy. Nature, 585, pp.357–362.

[10] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[11] Rodrigues, F., Pinto, Â., (2022) Prediction of football match results with Machine Learning. Procedia
Computer Science, 204, 463-470.

6

https://www.kaggle.com/datasets/hugomathien/soccer
https://github.com/fchollet/keras.


Appendix

Data Description

Figure 2: Data Composition by Season

Figure 3: Descriptive Statistics - Team Level Features

Figure 4: List of Player Level Features

Loss and Accuracies

Figures 5 - 8 represent the evolution of both the loss function and the model’s accuracy with respect to the
epochs in which they were calculated. In all figures, the x-axis corresponds to the epochs and the y-axis to the
corresponding metric.

7



(a) Value of Loss Function (b) Accuracy

Figure 5: Evolution of Loss and Accuracy for Main Model

(a) Value of Loss Function (b) Accuracy

Figure 6: Evolution of Loss and Accuracy for Draw vs. Non-Draw Model

(a) Value of Loss Function (b) Accuracy

Figure 7: Evolution of Loss and Accuracy for Loss vs. Non-Loss Model

(a) Value of Loss Function (b) Accuracy

Figure 8: Evolution of Loss and Accuracy for Win vs. Non-Win Model

8


	Introduction
	Related work
	Dataset and Features
	 Methods 
	Experiments/Results/Discussion
	Conclusion/Future Work 
	Contributions

