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1 Introduction

As the applications of autonomous systems become broader, the urgency for object detection that
enables higher-level automation increases. With the evolution of Deep Learning and the availability of
large datasets, many researches have demonstrated the feasibility of training deep networks for object
detection in images. Motivated by this development, we aim to apply and train a fine-grained neural
network to distinguish between different breeds of dogs. This network will label dogs’ locations
in images using bounding boxes and identify their breeds. The ability for multi-object fine-grained
detection in real-time can be adapted and generalized further for monitoring endangered animal
species. While state-of-the-art deep learning models can achieve high accuracy and precision in object
classification and localization, there have been some challenges in fine-grained image classification.
In most computer vision tasks, information on image background may help identify a specific category.
For example, if the background of an image is identified as the sky, we may assume the object in
the image is related to something that can fly. However, in the case of fine-grained classification,
such as dog breed identification, information on the background may be less valuable because target
classes are more likely to appear in similar backgrounds. As a result, when performing fine-grained
classification, it is necessary to introduce a mechanism to focus on important features in the image,
such as different body parts of a dog in the case of dog breed identification.

2 Literature Review

This project has two main focuses, real-time object detection, and fine-grained classification. There
is a vast amount of literature in both areas, but not so much on the intersection of the two. There are
two main model structures in real-time object detection, YOLO and R-CNN. YOLOv4 (You Only
Look Once) is a model with increased accuracy and speed for object detection that can be trained
with limited computational powers compared to EfficientDet[1]. Building upon it, YOLOVS5 reaches
state-of-the-art performance([2]]. Fast R-CNN is a structure that significantly increases training and
detection speed while improving the accuracy, especially for sparse object proposals, which were an
issue costly in time before[3]. Based on Fast R-CNN, Faster R-CNN introduces a Regional Proposal
Network(RPN) as an attention mechanism and shares convolutional features between the networks
to improve speed and accuracy[4]]. There are also multiple approaches to fine-grained classification.
Lin et al.proposed a Bilinear CNN that represents images as a dot product of features extracted
from two CNNs to identify localized features[S]]. Their model achieves high accuracy on various
datasets and can process at high speed on a GPU. Xiao et al. [6] used a two-level attention model in a
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Deep CNN by applying visual attention bottom-up, top-down, and part-level top-down to localize
discriminative parts. Similarly, Zheng et al. [7] proposed a Multi-attention CNN that consists of
convolution, channel grouping, and part classification sub-networks to generate parts from spatially
correlated channels and classified based on those parts. At the intersection, Zhang et al. [8] modified
YOLOVS and integrated it with Coordinate Attention for positional information and Context Feature
Enhancement Module (CFEM) for context information from multiple receptive fields to pay special
attention to small objects.

3 Dataset and Data Processing

3.1 Dataset

The dataset used for this project is the Stanford Dog Dataset [9]]. It has 20,580 images of 120 breeds
of dogs. The dataset is divided into 12,000 images in the training/validation set and 8,580 images in
the test set. The dataset provides labels of dog breeds and corresponding bounding boxes in each
image, saved in xml format. An example of a selected image from the dataset is shown in Figure [Ta]
All images in the dataset have a resolution of 640 pixels. One potential limitation of the dataset is
that there are only 100 images for each breed of dog, and therefore may not be sufficient to train a
large model.

3.2 Data Processing

The original dataset is not compatible with the YOLO model we are using. We developed scripts to
preprocess the dataset. See details in Appendix A.
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Figure 1: (a) Examples from Stanford Dog Dataset with labels and bounding boxes. (b) YOLOvS
model structure

4 Baseline and Evaluation Metrics

4.1 Baseline Model

The general structure of YOLOVS5 can be seen in Figure[Ib] It consists of three major components:
CSP-Darknet53 as the Backbone, SPPF (Spatial Pyramid Pooling - Fast) and CSP-Pan as the Neck,
and YOLO Detection as the Head. The Backbone extracts features from the image at different
granularities and passes those features to the Neck; the Neck then mixes and combines those features
and passes them to the Head; the Head uses those features to make predictions about classes and
bounding box positions for different anchors.

There are three fundamental blocks in the YOLOvVS model: CONYV, C3, and SPPF. A CONV
block consists of a 2D convolution with batch normalization and a Sigmoid Linear Unit (SiLU)
activation function. Let the input be X, a CONYV block can then be represented as CONV(X) =
SiLU(BatchNormal(Conv2d(X)). The C3 block consists of several CONV blocks, bottleneck blocks,
and skip connections. An SPPF block performs consecutive maxpooling and concatenates the result
of each maxpooling together. Their diagrams are illustrated in Figure[Tb]



YOLOVS has five different sizes, ranging from 1.9 million parameters to 86.7 million parameters.
Due to limited time and computational resources, YOLOvVSs and YOLOvS5m are used as the baseline
models. They have 7.2 million and 21.2 million parameters, respectively, which require reasonable
training time and memory.

4.2 Evaluation Metrics

Several standard metrics are chosen to evaluate model performance: Precision, Recall, mAP50,
and mAP50-95. Precision calculates the percentage of correct predictions; Recall calculates the
percentage of classes identified correctly; mAP50 is the mean Average Precision across all classes
with an IoU value of 0.5; mAP50-95 is the mean Average Precision with IoU values ranging from
0.5 to 0.95. In addition, we added a custom metric TopK accuracy, which takes in a user input K,
and evaluates the percentage of cases where the actual label is contained in the k most confident
predictions. kK = 3 will be used in this project. This evaluation metric is beneficial for determining
the breeds if the dog is a mix. We will also present a confusion matrix to analyze modes of failure.
Other metrics, such as training and prediction time, will also be tabulated.

5 Method

This project will focus on enhancing the YOLOvS5s model with different attention mechanisms and
modified structures.

5.1 Self-Attention Mechanism

The key intuition behind attention mechanisms is to have the model learn to focus on key information
that helps the classification task and suppress unimportant information. In the context of dog breed
identification, ideally, the model should learn to focus on key features, such as the head and body,
while neglecting background information. The attention mechanism used for this project is adapted
from Zhang et al.[10]. Given an input feature map X, the query Q, key K, value V, and attention
weight can be computed as follows,

Q=Wx; K =W x;V =W, x = AQ;K;V) = softmax(QK TV 1)

where W, Wy, and W, are learnable parameters. A multi-head self-attention is simply a concatena-
tion of multiple self-attention.

5.2 Vision Transformer

A transformer layer consists of a multi-head self-attention module and an MLP module (multi-layer
perceptron). Given an input X, the layer can be represented as the following,

a = MultiheadAttention(X) + X ?)
y = Wy(W,a) +a

A vision transformer is a block of a sequence of transformer layers. Given some 3D features X, the
transformer first flatten the features into R, then compute the linear projection through

y=WR+2X 3)

and feeds Y into multiple transformer layers consecutively. The output is then reconstructed into a 3D
feature.

5.3 Model Structure Modification

Our first naive attempt was to add self-attention layers immediately after feature extraction, resulting
in model BA. The intuition is to have the attention layer focus on crucial features in the image while
suppressing unrelated features after feature extraction and pass those crucial features into the next
stage for further processing.

We then modified this structure by changing how self-attention layers are inserted into the original
structure - insert either to a later stage or an earlier stage. We first tested by inserting the attention
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