Using Deep Learning to Estimate the Velocity of
Robots in Simulation

Avidesh Marajh Ian Chang
Department of Computer Science Department of Computer Science
Stanford University Stanford University
avidesh@stanford.edu ianchang@stanford.edu
Zahra Albasri

Department of Computer Science
Stanford University
zalbasri@stanford.edu

Abstract

Velocity estimation is becoming increasingly important in autonomous vehicles
and robotics. This paper explores a method for velocity estimation using only
low fidelity camera inputs. We simulate our environment using Gazebo, an open
source simulation tool, with an off-the-shelf TurtleBot3 as our simulated robot. Our
convolutional neural network model estimates the relative velocity of TurtleBot3
with respect to different environments using a sequence of images. The main
novelty in our approach is its reliance on vision only and its use of low fidelity
simulated data. Our approach performs well when using images from one simulated
world, but does not perform as well when testing on images from several simulated
worlds.

1 Introduction

Velocity estimation is an important challenge in robotics and autonomous vehicles. Current systems
use LiDAR which provides great accuracy, though it can be very costly. LiDAR also does not
perform well in extreme weather conditions. Methods of measuring speed using vision that are
widely employed are stationary cameras in streets. However, there is little research about vision-only
velocity estimation using a non-stationary camera on the vehicle. Using vision to estimate velocity
can provide additional data that can help a robot move more smoothly and in accordance to its desired
behavior. Moreover, cameras are inexpensive and small compared to LiDAR or radar. Implementing
a system that can effectively estimate velocity requires a large amount of data which can be expensive
to obtain. In this paper, we present a novel approach to vision-only velocity estimation. We exploit
images gathered from a simulated robot in different environments to train a convolutional neural
network (CNN) model. Our CNN model takes 3 frames as an input and outputs a velocity estimate in
meters per second.

2 Related work

Current approaches utilize LiDAR and radar techniques for velocity estimation and robot localization.
While LiDAR can provide high accuracy of metrics like velocity, it is very expensive and prone

CS230: Deep Learning, Fall 2022, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

to malfunctioning under certain weather conditions [4][5]. On the other hand, radar is cheap but
inaccurate and susceptible to noise.

Rotating Radio Frequency for Localization An attempt to improve upon radar methods uses
rotating radio frequency identification. While more accurate than a simple radar system, this method
is computationally expensive and not yet able to perform in real time [6].

Velocity Estimation with Camera and Radars An alternative approach uses a monocular camera
along with a mmW radar to estimate velocity and improve performance [5]. This system uses a
video matched with different radar readings; the data is passed through two convolutional layers and
each iteration uses the same set of data. This system performs well without any need for calibration,
though it could still be more costly than just using a camera alone for velocity estimation.

Vision-only Velocity Estimation There has been some interest in camera based velocity estimation.
One method uses RGB video data that is passed through a DepthNet, a FlowNet and a Tracker that is
then passed through an MLP. This approach is capable of performing in real time, but is less accurate
with distances greater than 20 meters [4]. Another successful method is vision-only RatSLAM, a
biologically inspired SLAM method [2]. This method uses the difference between images to estimate
speed. However, RatSLAM has only been tested in simulation. Another vision-only SLAM uses
low-cost cameras to estimate speed. This, however, method does not achieve real time performance

[1].

The novelty of our approach is that it is vision-only and uses simulation generated data only. Unlike
other approaches, our approach has a very modest computational cost, using a simple convolutional
neural network and only three frames to estimate velocity.

3 Dataset and Features

We did not utilize an imported dataset. Rather, we generated our data using a simulated robot in
a simulated environment. Our environment consists of a g4ddn AWS Linux VM set up with a X11
Virtual Networking Copmuting server. We installed ROS Noetic and Gazebo. ROS is the Robot
Operating System which defines a useful set of packages as well as a helpful pub/sub messaging
system to operate our simulated robot with. Gazebo is a fully fledged robotic simulator that allows
for the creation of simulated world environments and plugs in to ROS which allows us to operate
the robot within our simulated world environments. We use a simulated robot called a turtlebot. It
is a two wheeled robot that contains a virtual camera which can record the virtual environment as
we travel through it. Our simulated robot travels down a one-dimensional path in a variety of virtual
worlds. We have 5 virtual worlds varying in length between 10 m and 20 m. Each world contains a
patterned path as well as a variety of objects off the side of the path for the robot to recognize. Below
we display the 5 worlds in Fig. 1 that we created and ran our robot within. These are all original and
specifically designed for our project.

The robot travels down the track at a speed of 0.04 m/s. Using ROS, we record the images coming
out of the virtual simulated camera, and that is what creates our dataset. Below in Fig. 2 we display a
sample images from the simulated virtual camera on the robot. As we see, these display the image
the camera sees in the virtual world. We have an example image here from each of five worlds.

Fig. 2

Finally, because we know the total distance of the track we travel, we can speed up or slow
down the speed we travel at using the captured images. Our dataset totalled around 30,000 images
total, all generated through simulation with around 6,000 images for each world. Each image
resolution is 480x640. This data is then used to generate artificial problems for our model by first
sampling a speed between 0 and 5 m/s and then sampling a series of n images such that the ’distance
traveled’ between each image simulates the camera inputs over 1 second capture intervals if the
robot were moving at the sampled speed. We experimented with various values of n ranging from
3-5. We also experimented with various capture intervals before settling on 1 second. Thus, our
dataset in actuality gives us much more data then the 30,000 images would imply due to the sampling
and artificial problem generation. We created an extremely large effective dataset as it involved
sampling over a continuous problem space and gives a large number of possible problems. One of
the five worlds is reserved for testing our model, while the other four were used for training giving us
an 80/20 split. In order to create samples problems for training and testing we used the following
methods. For a desired velocity v from a dataset with /N images collected at a speed V' over ¢ seconds
we ﬁrJl\g the number of frames,n, that would be elapsed in a single second travelling at speed v using:
n= .

A sta;gng frame, f, is then randomly sampled from the dataset and the frames that followed are
taken as f; = fo + i *n.

4 Methods

For this project, we performed initial experimentation on 2 supervised learning models with data
collected from a single world. The fully shared model joins the n input images along their channel
axis before feeding them into 2 convolutional layers (each with ‘same’ padding and stride 1). We
experimented with n input images ranging from 3 to 5 input images before concluding that 3 worked
best and was computationally most efficient. The first layer has a kernel size of 5 and doubles the
input channels, the second layer has a kernel size of 3 and produces a single output channel. The
outputs of these are then flattened and passed through 3 linear layers. All layers save for the final
linear layer include a relu activation. Our second model is identical to the previous except that each of
the n input images are first passed through a single individual convolutional layer before being joined
to each other along the channel axis. They are then passed through a single shared convolutional
layer before flattening and passed through a similar set of linear layers as in the previous model.

All experiments were done with a sampling rate of 1 frame per second and a 3 frame input to the
model at every call. These models were trained using data from the simulation method described in
the dataset section with an L1 loss between the model outputs and the speed label. L2 loss was also
used for experimentation but converged to near identical points, as expected. All training was done
with a random seed(23) over 10000 training problems. The outputs of the models were then evaluated

over 1000 testing problems, taking the mean absolute error. All testing was done with a random
seed(212). Our initial experimentation concluded that the the fully shared model was superior and
was used for all further tests. We expanded our model by including data from 3 additional worlds in
training as well as 1 additional world to be used for testing. Additional improvements were made to
the model including the use of dropout layers between linear layers, resulting in the final architecture
as show in Fig 3 and the use of the Adam optimizer instead of SGD. Our findings immediately
showed that the model was not adapting well to the new data distribution and was simply relying
on a large bias and was therefore invariant to the input data. In order to reduce the load of the task,
experiments were run where the range of data used was reduced to [0,1]. We also experimented with
training the model in the [0,5] but with discrete samples rather than continuous.

Conv1 Conv2
Convolution Convolution
5x5 Kernel 3x3 Kernel
‘same’ padding ‘same’ padding Flatten FullyConnected! FullyConnected2 FullyConnected3

Relu

Relu Relu
= —> — — > Output

Dropout

=4 Dropout

p=d

(480 x 640 x6) (480 x 640 x 1)

Input
(480 x 640 x 3) (307200 x 1) (120x 1) (5x1) (1x1)

Fig. 3

S Experiments/Results/Discussion

When testing on the first world, results show that the fully shared model outperformed with a testing
error of 0.1155 and a training error of 0.2347. The other model showed a testing error of 0.2248 and
training error of 0.2480. However, when using data from four worlds for training and using the data
from the fifth world for testing, our model did not perform as well. When testing on the full range of
velocities (0-5 m/s), our model shows high bias and poorly fits on both familiar and unfamiliar data.
The model predicts 2.3966 m/s as the speed regardless of the actual speed. We see that when tasting
on velocity ranges 0-1, there is a general trend that the higher the simulated velocity is, the larger the
mean of the outputted velocity by our model is. However, our model still poorly fits and shows high
bias for the 0-1 case. This could be attributed to having a relatively small dataset, imprecise data and
simulating the ground truth. We chose to include 3 frames only to reduce computational load and
overfitting. However, this choice of using only 3 frames for predicting the speed likely contributed to
the low accuracy.

Model performance on training data with velocity range 0-1
Simulated velocity Model mean output velocity | Mean L1 loss
0 0.3546 0.3546
0.04 0.3931 0.3531
0.1 0.4005 0.3005
0.2 0.4093 0.2104
0.25 0.4070 0.1617
0.5 0.4896 0.0434
0.75 0.5449 0.2115
1 0.5471 0.4529

Model performance on testing data with velocity range 0-1

Simulated velocity Model mean output velocity | Mean L1 loss
0 0.4665 0.4665
0.04 0.4692 0.4292
0.1 0.4693 0.3693
0.2 0.4697 0.2697
0.25 0.4694 0.2194
0.5 0.4689 0.0311
0.75 0.4697 0.2803
1 0.4692 0.5308
Model performance on training data with velocity range 0-5 (using discrete samples)
Simulated velocity Model mean output velocity | Mean L1 loss
0 -0.1398 0.1467
0.04 0.5081 0.4819
1 1.1021 0.4749
2.5 1.4170 1.0830
3 1.3367 1.6633
4 1.3310 2.6690
5 1.3489 3.6511
Model performance on testing data with velocity range 0-5 (using discrete samples)
Simulated velocity Model mean output velocity | Mean L1 loss
0 -0.0557 0.1468
0.04 0.6859 0.6960
1 1.0846 0.4127
2.5 2.1395 0.6017
3 2.1981 0.9624
4 2.7337 1.3275
5 2.3462 2.6538

6 Conclusion/Future Work

We clearly had mixed results. We believe that this is due to a combination of factors. The simulation
data was low fidelity and we probably needed to generate more. In addition, this is generally a
difficult problem and though we tried a variety of data sampling methods none gave stellar results.
In addition to varying the velocity sampling range, we also varied the number of frames sampled.
We did not observe better results for sampling more frames and sampling more frames became
computationally expensive due to how the data was encoded so we did not continue down that
path. The most interesting observation we had is that the discrete data gave better results than the
continuous data. We think the discrete sampling gave better results because it created a smaller data
space that the model could learn better. If had more time and team members, we would create new
simulation data with much higher fidelity and much greater quantity. We would also experiment
more with sampling different velocity rates, different number of frames for the input, and different
ways of generating our artifical problems. If these problems are able to be worked out and the model
performs well for simulated images, performing transfer learning on real images would be the next
step we would take.

7 Contributions

We all contributed equally. Avidesh Marajh worked on model architecture design, model coding,
project ideation, and report writing. Ian Chang worked on AWS set up, robot simulation infrastructure
creation, simulated images generation and collection, helped with model architecture design, project
ideation, and report writing. Zahra Albasri worked on project ideation, simulated world generation,
research on related work, research on novelty, and report writing.

References

[1] Burgard, W., Brock, O., & Stachniss, C. (2008). Mapping large loops with a single hand-held camera.

[2] Dall’ Osto, Dominic, Hausler, Stephen, Jacobson, Adam, & Milford, Michael (2018) Automatic calibration
of a biologically inspired neural network for robot SLAM. In Proceedings of the Australasian Conference on
Robotics and Automation (ACRA 2018). Australian Robotics and Automation Association (ARAA), Australia,
pp. 1-10.

[3]1 M. J. Milford and G. F. Wyeth, "Mapping a Suburb With a Single Camera Using a Biologically Inspired
SLAM System," in IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1038-1053, Oct. 2008, doi:
10.1109/TR0O.2008.2004520.

[4] Moritz Kampelmiihler, Michael G. Miiller, Christoph Feichtenhofer. Camera-based vehicle velocity
estimation from monocular video. (2018).

[5] Pandya, A.; Jha, A.; Cenkeramaddi, L.R. A Velocity Estimation Technique for a Monocular Camera Using
mmWave FMCW Radars. Electronics 2021, 10, 2397. https://doi.org/10.3390/ electronics10192397

[6] R. Zhao, Y. Zhang, G. Wang and D. Wang, "Mobile Robot Localization using Rotating Synthetic Aperture
RFID," 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), 2018, pp. 1-6, doi:
10.1109/GNCC42960.2018.9019177.

[7] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... Chintala, S. (2019). PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing
Systems 32 (pp. 8024-8035). Curran Associates, Inc. Retrieved from http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[8] Clark, A. (2015). Pillow (PIL Fork) Documentation. readthedocs. Retrieved from
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf

[9] Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357-362
(2020). DOLI: 10.1038/541586-020-2649-2

[10] Stanford Artificial Intelligence Laboratory et al. (2018). Robotic Operating System. Retrieved from
https://www.ros.org

[11] N. Koenig and A. Howard, "Design and use paradigms for Gazebo, an open-source multi-robot simulator,"
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566),
2004, pp. 2149-2154 vol.3, doi: 10.1109/IROS.2004.1389727.

[12] T. Foote, M. Wise, Robotis. (2019). Turtlebot3. Documentation Manual. Retreived from
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

	Introduction
	Related work
	Dataset and Features
	 Methods
	Experiments/Results/Discussion
	Conclusion/Future Work
	Contributions

