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Abstract

Seismic imaging is used to map Earth geologic structures for energy resources
exploration and characterization. Conventional methods yield blurred images with
illumination artifacts. We developed a supervised convolutional neural network
(CNN) approach to increase the resolution and compensate for illumination im-
balance in conventional seismic images. By letting the CNN learn the appropriate
mapping between input and output images, it can recover a better representation of
the geologic structures.

1 Introduction

Active seismic experiments consist sending "sound" waves into the subsurface of the Earth using a
human-made source (e.g. explosion, vibrator, air-gun) and recording their echo at the surface using
receivers (e.g hydrophones, geophones, fiber-optic cables). A seismic echo will occur when the wave
encounters an interface between any two geologic layers which have different properties. These
properties are in general wave speed and medium density but the latter is often ignored. We designate
by m the Earth model of seismic wave speed and by d the data collected at the surface. The data is a
collection of time series, one time series per receiver, and is related to m non-linearily via the wave
equation (PDE): d = d(m). This relationship can be "linearized" and written as

d1 = B(m0)r, (1)

where m0 is a smooth version of m called background Earth model, r is the subsurface reflectivity
characterizing the geologic interfaces, and B is the linearized modeling operator that depends on m0

and on the data acquisition parameters (e.g. source-receiver geometry, source signal bandwidth). The
background Earth model is assumed known as it can be estimated using techniques such as traveltime
tomography and waveform inversion. In this work, we will omit m0 from B for conciseness and we
will consider fixed acquisition parameters.

The ultimate goal is to recover the best approximation of the reflectivity r. This is the seismic imaging
(inverse) problem (Claerbout, 1985). r has values ranging from -1 to 1 (dimensionless) and is used
for subsurface structural interpretation and lithology classification to find and characterize potential
oil and gas reservoirs, geothermal sources, potential sites for carbon capture and sequestration, and in
many other applications.

The operator B in (1) is seldom explicitly built as a matrix since it becomes computationally and
memory-wise prohibitive for reasonably-sized problems. Alternatively, only the matrix-vector
products Bv and B∗u can be computed (B∗ is the adjoint of B), but even these products are
computationally intensive as they require solving numerically a PDE. The conventional method to
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estimate the reflectivity is to use the adjoint operator only, which reads

rmig1 = B∗d1. (2)

It is like replacing the deconvolution with transpose convolution in neural networks decoder. This
imaging method is called "migration" (which why we use the subscript mig).

rmig1 is a degraded version of r because B∗ ̸= B−1 (the inverse may not exist at all). This
degradation translates into loss of resolution, reflectors dimming, and illumination artifacts; it gets
worse when the background Earth model m0 is complex, the acquisition geometry is irregular or
sparse, or the source signal has a very limited bandwidth. In this work, our goal is to use a supervised
Convolutional Neural Network (CNN) that takes as input a single channel image that approximates r
using the conventional method (e.g. rmig1), and outputs an enhanced version of that image that is
"closer" to the true reflectivity r.

2 Related work

A well-known approach that leads to a higher-resolution reflectivity image with less illumination
artifacts is to build the least-squares migration (LSM) (Nemeth et al., 1999)

rlsm = (B∗B)−1B∗d. (3)

LSM requires inverting the Hessian matrix Hr = B∗B. This can be done using iterative solvers such
as conjugate-gradient least-squares (CGLS) or GMRES but can take many expensive iterations to
converge to a good solution. Torres and Sacchi (2022) used a CNN to regularize the iterative inverse
problem and accelerate convergence by projecting the gradient at each iteration onto an admissible set
determined by the pre-trained CNN. However, this approach is still expensive as it relies on iterative
solution. Moreover, the size of the needed CNN is proportional to the number of iterations which is
unknown a priori. Alternative methods have been proposed to replace or accelerate the LSM iterative
process using matching filters that approximate the inverse Hessian matrix (Aoki and Schuster, 2009;
Wang et al., 2017; Guitton, 2017). However, the effectiveness of such methods remain limited. Torres
and Sacchi (2021) used a CNN to replace the matching filters in estimating the inverse of Hr but the
training strategy relies on the true reflectivity which is never known in field applications. Thus, the
method does not take advantage of field data when they are available or account for the effects of
acquisition parameters and background model m0. Therefore, it can hardly be generalized.

3 Method

The method we propose is similar in spirit to the one suggested in Torres and Sacchi (2021), that is
we aim at estimating H−1

r using a deep CNN, N (θ), but with a different training strategy. The set of
network parameters are designated by θ. We call our method LSMNet and we do not use the true
reflectivity r as CNN training labels as is the case in Torres and Sacchi (2021). Instead, the output
(training labels) is a set of migrated images r(i)mig1 = B∗d

(i)
1 , and the input is the "double-migrated"

images
r
(i)
mig2 = B∗d

(i)
2 = B∗Br

(i)
mig1. (4)

We train N (θ) to learn the mapping H−1
r between r

(i)
mig2 and r

(i)
mig1. Then, we use N (θ) in inference

mode to obtain an enhanced reflectivity image

rcnn = N (rmig1; θ). (5)

We would like rcnn to be "better" than the traditional migration rmig1 by being "closer" to the true
reflectivity r. Our approach has two main advantages compared to using r as training labels. Firstly,
having migrated images on both ends of the CNN makes the latter more agnostic to the background
Earth model m0 and acquisition parameters which are implicitly embedded non-linearily in the
operator B used to generate the migrated images. Secondly, when field data is available (as opposed
to synthetic data), it can also be used to augment the training dataset. This cannot be done when
using r in the CNN training since it is never known in reality. These advantages make our approach
more generalizable and robust. However, it remains "under-ambitious" in trying to recover the true
reflectivity r since it is unable to fill the null-space of the Hessian. As an alternative, we also tried the
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approach where we train the CNN using both rmig1 and rmig2 as two input channels and r as labels
directly. We write the prediction formally as

rcnn = N (rmig1, rmig2; θ). (6)

With this second approach, the network is not strictly approximating the inverse Hessian anymore
and we cannot train it with field data when available. Nevertheless, we maintain the first advantage
mentioned above since the non-linearily in the operator B is still embedded in the relation between
the two channels rmig1 and rmig2.

There is no CNN model available to serve as a baseline for our task. However, we use the architecture
from Torres and Sacchi (2021) to build and train our benchmark CNN model. This architecture
is illustrated in Figure 1. It is a lighter version of U-net with 5 convolutional blocks with ReLU
activation and one last convolution layer to capture the image features. Max-pooling halves the
size of the image in the encoding part and the transpose convolution doubles it in the decoding
part. Multiple skip connections are used to prevent gradients vanishing and transfer image features
between encoding and decoding layers. The top level skip connection adds back the input image to
the network output. For the first approach, we train the CNN by minimizing over θ the pixel-to-pixel
misfit between rmig1 and the network output (mean squared error MSE for the benchmark model).
For the second approach, we use a one-level deeper network and minimize the misfit between r and
the network output.

Figure 1: Benchmark CNN architecture for LSMNet (adapted from Torres and Sacchi (2021)). The
number of channels is indicated below each block. The size of the input image going through each
block is given with respect to the input size I.

4 Dataset

We generated training/validation/testing images following these steps:

• Use a synthetic geologic model generator (Clapp, 2018) to build 1024 Earth models m of
size 512 x 256 each

• Decompose each model m into background m0 and reflectivity r

• Generate a first set of seismic data d1 (recordings at the surface of the Earth) solving (1)
• Compute the first migrated image rmig1 solving (2)
• Generate a second set of seismic data d2 = Brmig1

• Compute the second migrated image rmig2 solving (4)

To build the Earth models, we constructed a Jupyter Notebook inside a ready-to-use Docker image
which includes all the necessary Python modules (Farris, 2022). For the computations involving
B and B∗, we used our own open-source C++ code (Bader, 2022). We augment our dataset by
flipping horizontally and splitting into 4 quadrants. We shuffle the images to randomize their order
and normalize their amplitudes individually so that values fall between -1 and 1. This results in

3



ready-to-use 8192 pairs of images of size 256 x 128 each. We keep 512 pairs for validation (6.25%)
and another 512 for testing.

Figure 2 illustrates the dataset creation workflow with an actual example. The seismic data is acquired
using 11 sources and 489 hydrophones at the surface (at Depth = 0 km). Only a single source (red star)
is overlaid on top of m for simplicity, along with the corresponding hydrophones (yellow horizontal
line). The seismic recordings ("echos") d1 and d2 from that same source are also shown. Red (green)
arrows indicate the application of the operator B (B∗). The black dashed boxes indicate the datasets
used in the CNN training for our first approach. Notice how the traditional image rmig1 is a blurred
version of the true reflectivity r with loss of continuity due to the imbalanced illumination. Notice
also the acquisition footprints visible in particular at the first shallow reflector (horizontal "beating" at
the top of the image). The second migrated image rmig2 gets even worse because of the compounded
effects of successively applying the operator B∗.

Figure 2: Diagram illustrating the workflow for generating the dataset for LSMNet.
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Parameter Benchmark Upgrade Notes

Activation ReLU leaky ReLU Allow negative values
Normalization None Batchnorm Improve convergence

Loss MSE l1 More attention to weaker reflections
Mini-batch size 2 16 Regularization effect
Learning rate 0.001 0.005 Faster training

Other - tanh activation before the output Constrain output to [-1,+1]
Table 1: Difference between benchmark and upgraded CNN.

5 Experiments and Results

In this section, we cover the first approach described in Section 3. Refer to the video-presentation for
the results with the second approach. As mentioned previously, we trained a benchmark CNN model
following Torres and Sacchi (2021) whenever possible. Then, we upgraded the model by changing
certain (hyper)parameters in order to improve the final results. Since training is computationally
intensive, we did not iterate on every parameter separately but we changed a bundle of parameters at
once. Since we deal with an image-to-image problem, our measure of performance/effectiveness was
the cost function itself, the cosine similarity metric between images (e.g. CNN output and labels)
cs =

imageT1 image2
∥image1∥∥image2∥ , and the qualitative assessment of the sought seismic image rcnn compared

to the conventional one rmig1. We select the best CNN model and detail its differences compared to
the benchmark in Table 1.

We train both models from scratch with 21 epochs. We show in Appendix (Figures 4 and 5) the
cost functions and cosine similarity metric for both models during training and validation. Once
trained, we use each model to predict (infer) the reflectivity according to equation 6 for all 512
testing examples. The corresponding cosine similarity metric is also shown in Appendix (Figure 6).
Generally, both CNN models perform well in terms of convergence and metric. However, looking only
at the global measures above may lead to conclude that the benchmark model performs better. Figure
3 shows a comparison between conventional image rmig1 and predicted reflectivity using both models
for 4 examples from the testing set. Figure 7 in Appendix shows the corresponding true reflectivity r.
We observe an improvement in the CNN predicted images (illumination compensation, reflectors
continuity, and vertical resolution) compared to rmig1. The improvement is more pronounced when
we use the upgraded CNN. Figure 8 in Appendix shows the average amplitude spectra of the different
seismic images. The spectra clearly show that the upgraded CNN was able to improve the vertical
resolution of the images (wider wavenumber spectrum) more than the benchmark CNN. We can
deduce from these observations that using pixel-to-pixel comparison may not be the optimal measure
of performance or the best type of loss to use in training the CNN with seismic images.

6 Conclusion and Future Work

We have developed a novel method based using a CNN with a U-net architecture to estimate the
inverse Hessian relating pairs of seismic images. We used our network in inference mode to predict
Earth subsurface reflectivity. Our method leads to an improved image compared to conventional
methods. The results quality depend on CNN parameters and training strategy, and global performance
metrics may be misleading if not investigated carefully. For future work, we would like to use more
sophisticated methods to measure similarity between seismic images such as the structural similarity
index measure (SSIM) (Wang et al., 2004) or other relevant measures. We would like also to train
our CNN using more sophisticated (and common) Earth models including faults and salt bodies, and
apply our method to field seismic images.

7 Contributions

Milad generated the synthetic Earth models along with the data depicted in Figure 2. Julio built the
benchmark CNN and tested it on a batch of examples. Both Milad and Julio built subsequent models
starting from the benchmark CNN.
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(a) Conventional images rmig1

(b) Predicted images by benchmark CNN

(c) Predicted images by upgraded CNN.

Figure 3: Four examples of seismic images from the testing set.
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8 Appendix

(a) Benchmark CNN (b) Upgraded CNN

Figure 4: Cost function during the training of the CNN models. (a) MSE. (b) l1-norm.

(a) Benchmark CNN (b) Upgraded CNN

Figure 5: Average cosine similarity between labels and CNN output during the training of the CNN
models.

(a) Benchmark CNN (b) Upgraded CNN

Figure 6: Cosine similarity between true reflectivity r and migrated image before and after using the
CNN inference on all 512 testing examples.
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Figure 7: True reflectivity corresponding to the examples shown in Figure 3.

Figure 8: Average amplitude spectra corresponding to the seismic images shows in Figures 3 and 7.
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