Deep learning for financial derivative pricing.

Name: An Shen
Department of Computer Science
Stanford University
anshen21@stanford.edu

1 Introduction

How to quickly and accurately price a financial derivative is critical to the profitability of a bank.
From trading perspective, as the market moves, an instantaneous re-price of financial derivative can
help traders make critical decisions. From risk management perspective, the more risk scenarios you
can look into, the better control you may have.

However, as financial derivatives are getting more and more complicated, the pricing tends to be
slower and slower. How to price financial derivatives using deep learning method is now a very active
area for both the academics and practitioners. In this paper, we will use deep learning methods to
price a variety of exotic financial products:

» Basket Losses

* Bermudan Swaption

* Callable Bonds

* CDS

» Convertible Bonds

e CVA Swap

* Equity Option

* Replication
More over, feature engineering is not very common with financial data, as most data are well
structured and well understood. In this paper, we will use SVI[1] parametrization of volatility surface

as a novel way to see if feature engineering can improve the DNN’s performance for financial data. 1
believe this is the first time we are trying this approach.

2 Related Work

Many previous work has been done in this area since 1990[2][3][4][5]. However, most of the
academic research are focused on simple derivatives such as vanilla stock option. Or, they tend to use
simplified input data, such as a flat volatility surface (one number for the whole surface).

In this paper, we will focus on using DNN to price complicated financial products with more
comprehensive data and also with feature engineered data. (Such as interest rate curve, volatility
surface and hazard rate.)

3 Dataset and Features

Due to license issue, for this exercise I cannot use official vendor data. Quantlib (https://www,
quantlib.org/) is used as the tool to generate the data. Quantlib is one of the best financial
derivative libraries in the public domain. It’s been used as a standard benchmark in many settings in
the financial industry.

When use Quantlib to generate the data (simulate the market data, calculate the derivative price), a
very important decision is what parameters to ignore, as to train on all the parameters is not practical

https://www.quantlib.org/
https://www.quantlib.org/

for this project. Here are the major input data features I chose to generate, based on the importance to
pricing and the relevance to this project:

* Recover Rate

* Interest Rate

* Interest Rate Volatility
* Equity Volatility

* Moneyness

* CDS Spread

* Hazard Rate

The output is the derivative price.

Here is a sample of the data(for CDS_E2):

Derivative Price, Calculation Time, IR 1M, IR 2M, IR 3M, IR 6M, IR 9M, IR 1Y, IR 2Y, IR 3Y,
IR 4Y, IR 5Y, IR 6Y, IR 7Y, IR 8Y, IR 9Y, IR 10Y, IR 12Y, IR 15Y, IR 20Y, IR 30Y, Hazard Rate,
Recover Rate

816298, 0, 0.0003, 0.000225, 0.000405, 0.00092, 0.00128, 0.001685, 0.001115, 0.00138, 0.001765,
0.00226, 0.00286, 0.003525, 0.00421, 0.00486, 0.00545, 0.006435, 0.007485, 0.0085, 0.009105,
0.02,0.41

4 Baseline

The main baseline model is the one in [5], It has 4 hidden layers of 100 neurons each. The activation
functions are LeakyReLLU, ELU, ReLLU and ELU respectively for each layer. The final output
layer comprises a single output neuron set to be the standard exponential function so the output is
non-negative. At each hidden layer a dropout rate of 25% is applied. The loss function used for
optimization is mean-squared error (MSE). The batch size is 64. The model is trained with 10 epochs.

I do feel that training with 10 epochs was a limitation of hardware at the paper’s time. I tried 500 in
my effort to replicate the baseline result. Please notice that the main baseline model is only run for
the Equity Option product, as it was designed for in [5].

A second baseline of using Linear Regression is also conducted, as a comparison to other methods in
general.

5 Methods

We will use MLP here and try to optimize the hyper parameters.

Due to limited resource, a few hyper parameters are chosen based on past experience: The activation
function used is Swish. Past experience showed that Swish is normally no worse than other popular
activation functions. The batch size is set to 2 for small data set, 8 for medium data set and 32 for
large data set, as I want to take the most advantage of the regularization effect of Mini-Batch . The
optimization function is Adam.

The data set is split 60/20/20 (Train/Dev/Test). A random search is used to find the number of DNN
layers (2 to 10) and the number of neurons (8 to 1024) at each layer, per different financial product.

Each run will stop after certain amount of epochs based on the observation of convergence (200, 300
or 500, depends on the derivative). The model which provides the best Dev result will be used for the
Test. I will not use any explicit regularization method as I believe the DNN size is by itself a good
regularization.

Mean absolute percentage error(MAPE) is used to measure the accuracy of the result. Mean absolute
error(MAE) is provided as a reference. The loss function is still MSE.

One particular test (No Feature_VOL v.s. Feature_SVI) is designed to see if SVI parametrization
feature engineering can improve the result. SVI parametrization is basically using a function with 5
parameters to represent a slice of volatility surface, which is a curve at a particular expiry date. The
original data may have 20 or more actual volatility data points for each slice. We use original data
points or the 5 SVI parameters as two different input data sets(plus other data); and see which one
gives the better result.

6 Experiments/Results/Discussion

Here is the DNN result:

Product Name (_ Numerical Method) Layer | Neuron | Batch Size | MAPE MAE
BasketLosses_BaseCorrelationGLHP 7 8 8 0.042755 | 0.012496
BasketLosses_GaussianBinomial 4 256 8 0.13112 0.036747
BasketLosses_GInhomogeneous 4 256 8 0.140218 | 0.040784
BasketLosses_ GLHP 8 8 8 0.038944 | 0.011354
BasketLosses_ RandomG 7 32 8 0.10879 0.031611
BasketLosses_RandomLossG 6 256 8 0.037375 | 0.010441
BasketLosses_RandomT 2 1024 8 0.098458 | 0.028586
BasketLosses_TBinomial 2 1024 8 0.086039 | 0.023834
BermudanSwaption_BK 7 64 32 1.294388 | 0.11244
BermudanSwaption_G2FDM 4 128 32 1.175972 | 0.084476
BermudanSwaption_G2Tree 5 1024 32 1.064222 | 0.092518
BermudanSwaption_ HW2FDM 9 32 32 1.077003 | 0.072749
BermudanSwaption_ HW2Tree 9 512 32 1.023689 | 0.088785
BermudanSwaption. HWFDM 8 64 32 0.944994 | 0.066299
BermudanSwaption_HWTree 6 128 32 1.743009 | 0.107169
CallableBonds 4 16 2 0.042959 | 0.035312
CDS_E1_1Y 3 512 2 0.052219 | 39.04919
CDS_E1_2Y 3 128 2 0.049734 | 72.51462
CDS_E1_3M 5 32 2 0.051927 | 12.71989
CDS_E1_6M 5 32 2 0.038149 | 14.25715
CDS_E2 6 256 8 0.166011 | 23043.64
ConvertibleBonds_AdditiveEquiprobabilities_ AM | 5 32 2 0.129612 | 0.156451
ConvertibleBonds_AdditiveEquiprobabilities_ EU | 4 64 2 0.104203 | 0.12691
ConvertibleBonds_CoxRossRubinstein_ AM 7 512 2 0.159052 | 0.19051
ConvertibleBonds_CoxRossRubinstein_ EU 6 128 2 0.091093 | 0.110924
ConvertibleBonds_JarrowRudd_AM 5 64 2 0.121032 | 0.147271
ConvertibleBonds_JarrowRudd_EU 7 16 2 0.088149 | 0.108797
ConvertibleBonds_Joshi_ AM 10 16 2 0.105794 | 0.130677
ConvertibleBonds_Joshi_ EU 6 1024 2 0.09917 0.118956
ConvertibleBonds_LeisenReimer AM 4 32 2 0.14115 0.168813
ConvertibleBonds_ILeisenReimer_EU 7 64 2 0.092445 | 0.111749
ConvertibleBonds_Tian_AM 10 8 2 0.095824 | 0.118909
ConvertibleBonds_Tian_EU 8 512 2 0.107463 | 0.12911
ConvertibleBonds_Trigeorgis_AM 9 256 2 0.116447 | 0.143198
ConvertibleBonds_Trigeorgis_EU 8 64 2 0.096126 | 0.116057
CVASwap_10 4 32 32 0.09869 0.000391
CVASwap_15 10 32 32 0.100703 | 0.000785
CVASwap_20 4 128 32 0.057521 | 0.000721
CVASwap_25 5 128 32 0.049069 | 0.000811
CVASwap_30 6 32 32 0.069239 | 0.001363
CVASwap_5 5 128 32 0.391234 | 5.61E-05
Replication_BarrierOption 6 256 8 0.540374 | 0.004269
EquityOption_BinomialCoxRossRubinstein_ AM | 5 16 8 0.397571 | 0.027521
EquityOption_BlackScholes_EU 9 16 8 0.417976 | 0.012054

Product Name (_ Numerical Method) Layer | Neuron | Batch Size | MAPE MAE
EquityOption_BlackVasicek_EU 8 8 8 0.143927 | 0.009882
EquityOption_FiniteDifferences_ AM 7 16 8 0.331846 | 0.01263
EquityOption_HestonSemiAnalytic_ EU 8 8 8 0.39605 | 0.008421
EquityOption_MCCrude_EU 8 32 8 0.400269 | 0.012334
EquityOption_MCLongstaffSchwartz_AM | 7 1024 8 0.36481 | 0.020632
EquityOption_QMCSobol _EU 7 32 8 0.436067 | 0.00796

Based on the result above, except Bermudan Swaption, all other products have a MAPE less than 1%.
And the MAPE of Bermudan Swaption is less than 2%. This means DNN can be used to approximate
the pricing function.

The result for the main base line (EquityOption_BlackScholes_EU) is MAPE 22.1487 and MAE
0.405890. Which is much higher than the new architect (MAPE 0.417976 and MAE 0.012054). The
main reason to me is the dropout layer. Based on my past experience, with regression, dropout seems
always make things a lot worse.

The result for the second base line is in the Attachment. On average, the MAPE for DNN is
0.303017597, and the MAPE for Linear Regression is 0.539843749. Not surprisingly, DNN is better
than Linear Regression.

The result for Feature Engineering v.s. No Feature Engineering is below. It shows that Feature
Engineering actually made things worse.

Feature Engineered/ No Feature Engineer | Layer | Neuron | Batch Size | MAPE MAE
Feature_SVI 5 8 2 0.722857 | 0.620889
No Feature_VOL 10 32 8 0.207944 | 0.106228

7 Conclusion/Future Work

Based on the result, we can say that DNN can be used to price financial derivatives. Future work
would include using vendor data to conduct the final test, advocate the result in financial community
and complete an open source solution to this problem.

8 Contributions

An Shen

9 References

[1] Jim Gatheral, Antoine Jacquier. Arbitrage-free SVI volatility surfaces. 2013.

[2] M. Malliaris and L. Salchenberger. A neural network model for estimating option prices. Journal
of Applied Intelligence.3(3):193-206, 1993b.

[3] Marco J. Morellia, Guido Montagna, Oreste Nicrosinib, Michele Treccani, Marco Farina, Paolo
Amato. Pricing Financial derivatives with neural networks. Physica A 338 (2004) 160 — 165.

[4] Ralf Herrmanny and Alexander Narr. Neural Networks and the Valuation of Derivatives Some
Insights into the Implied Pricing Mechanism of German Stock Index Options. 1996 meeting of the
German Finance Association.

[5] Robert Culkin & Sanjiv R. Das. Machine Learning in Finance: The Case of Deep Learning for
Option Pricing. Santa Clara University. 2017.

10 Attachment

Here is the Linear Regression result:

Product Name (_ Numerical Method) MAPE MAE
BasketLosses_BaseCorrelation GLHP 0.000601532 | 0.017714
BasketLosses_GaussianBinomial 0.008737159 | 0.248782
BasketLosses_GInhomogeneous 0.00747137 | 0.214686
BasketLosses_ GLHP 0.000601532 | 0.017714
BasketLosses_ RandomG 0.007721531 | 0.221249
BasketLosses_ RandomLossG 0.008564095 | 0.240277
BasketLosses_RandomT 0.004003282 | 0.116539
BasketLosses_TBinomial 0.008569334 | 0.242658
BermudanSwaption_BK 0.305201791 | 2.434856
BermudanSwaption_ G2FDM 0.279433899 | 2.267207
BermudanSwaption_G2Tree 0.281529108 | 2.354132
BermudanSwaption_ HW2FDM 0.347518299 | 2.395602
BermudanSwaption_ HW2Tree 0.341299604 | 2.384304
BermudanSwaption_ HWFDM 0.364128963 | 2.420076
BermudanSwaption_ HWTree 0.357556313 | 2.413801
CallableBonds 0.006742506 | 0.53191
CDS_E1_1Y 0.053495462 | 2277.981
CDS_E1_2Y 0.088860028 | 6707.733
CDS_E1_3M 0.019215533 | 274.4301
CDS_E1_6M 0.031455321 | 756.4332
CDS_E2 1.150928166 | 3873359
ConvertibleBonds_AdditiveEquiprobabilities_ AM | 0.001926878 | 0.232074
ConvertibleBonds_AdditiveEquiprobabilities_ EU | 0.00257342 0.298468
ConvertibleBonds_CoxRossRubinstein_ AM 0.003050999 | 0.371314
ConvertibleBonds_CoxRossRubinstein_ EU 0.003982303 | 0.472256
ConvertibleBonds_JarrowRudd_AM 0.002729203 | 0.329506
ConvertibleBonds_JarrowRudd_EU 0.003647749 | 0.42928
ConvertibleBonds_Joshi_AM 0.003169582 | 0.386793
ConvertibleBonds_Joshi_ EU 0.004066814 | 0.483292
ConvertibleBonds_ILeisenReimer_ AM 0.003169587 | 0.386794
ConvertibleBonds_ILeisenReimer_EU 0.004066797 | 0.48329
ConvertibleBonds_Tian_AM 0.002712681 | 0.327446
ConvertibleBonds_Tian_EU 0.003635481 | 0.427431
ConvertibleBonds_Trigeorgis_ AM 0.003020617 | 0.367709
ConvertibleBonds_Trigeorgis_ EU 0.003935586 | 0.466668
CVASwap_10 0.369289977 | 0.103546
CVASwap_15 0.274443157 | 0.201693
CVASwap_20 0.22851758 0.280259
CVASwap_25 0.204133249 | 0.332474
CVASwap_30 0.191392562 | 0.365715
CVASwap_5 1.45782471 0.013403
Replication_BarrierOption 1.085713793 | 0.820648
EquityOption_BinomialCoxRossRubinstein_ AM | 2.294670029 | 0.880491
EquityOption_BlackScholes_EU 2.739269937 | 0.909345
EquityOption_BlackVasicek_EU 0.437071874 | 0.854498
EquityOption_FiniteDifferences_ AM 2.290314272 | 0.880702
EquityOption_HestonSemiAnalytic_EU 2.738992904 | 0.909346
EquityOption_MCCrude_EU 2.910880444 | 0.910994
EquityOption_MCLongstaffSchwartz_AM 3.332728584 | 0.870196
EquityOption_QMCSobol_EU 2.717621867 | 0.909338

	Introduction
	Related Work
	Dataset and Features
	Baseline
	Methods
	Experiments/Results/Discussion
	Conclusion/Future Work
	Contributions
	References
	Attachment

