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1 Novelty

Providing controllability to generative tasks has been a long-standing problem. In a symbolic music
generation task, controllable generation effectively aligns with the artist’s expectations via different
indicators, such as instrument, genre, or melody trend, which could be helpful in real-world tasks,
including film score composition and accompaniment generation. Thus, we suggest an end-to-end
symbolic music generation model with plug-and-play controllability. The most outstanding novelties
of our project are utilizing the latent diffusion model on symbolic music generation using a modified
Transformer[21] with time embedding and training classifiers as plug-and-play classifiers.

2 Introduction

Continuous diffusion model[8][1][19][12] is effective in vision and audio domains and has been
recently adapted to the text generation task[13]. We use a similar approach by Diffusion-LM in
our end-to-end model to achieve similar distribution of outputs in the generation tasks; by training
and providing a classifier to guide denoising steps, we can achieve controllability on the output.
In detail, we use a dedicated tokenizer and "Bar-Block" padding method to parse symbolic notes
into fixed-length sequences. Through a customized Transformer[21] model, we predict the latent
variables yielded in each step of the denoising process and round the output to note tokens by the
K-NN algorithm, thus, generating output midi files. Due to the limited scale of this project, we
emphasize the controllable generation of single MIDI tracks.

You can find our model’s code implementations on https://github.com/SwordElucidator/
Diffusion-LM-on-Symbolic-Music-Generation.

3 Relate Work

3.1 Diffusion Models for Discrete Data

Diffusion-LM[13] adapted continuous diffusion to discrete data generation by using the Trans-
former[21] model and achieved structural and semantic controls by iteratively performing gradient
updates on the continuous latent variables. We use a similar method for discrete tokenized midi data.

3.2 Diffusion Models for Symbolic Music Generation

Diffusion model In the research paper "SYMBOLIC MUSIC GENERATION WITH DIFFUSION
MODELS" [14], the author considered MusicVAE [18] to build continuous latent variables, linking
to the diffusion procedure in DDPM [8] and received excellent results. While their attempts used
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Figure 1: General Architecture of the Model

VAE to predict continuous latent variables, we hope to use a transformer to predict continuous latent
variables so that we could use a classifier sharing the same embeddings to guide the latent variable.

3.3 Other Symbolic Music Generation Methods

Traditionally, RNN and GAN structured music generators such as MelodyRNN[22] and MuseGAN[4]
were popular. There were also many Transformer based generation models such as Music Trans-
former[9], OpenAI’s MuseNet[16], and PopMAG[17] focusing on musical compositions.

4 Dataset and Features

Due to the project’s size, we concentrate on single-track music data. We tried GiantMIDI-Piano[11], a
classical piano MIDI dataset containing 10,855 MIDI files of 2,786 composers. Since it is challenging
to learn the complexity of classic piano tunes, we also use another mono-midi-transposition-dataset[6],
a more manageable midi dataset for monophonic music containing 15,972 shorter MIDI files from
different instruments. We separate them into 9552/2400/3980 for training/validation/evaluation.

5 Methods

A general architecture of the model is shown in fig1:

5.1 Tokenizer, Padding and Embedding

We used MidiTok [5], a popular Python package to tokenize MIDI music files into sequences of
tokens. We experimented with several different tokenizers including Midi-like[15], REMI[10], and
Structured[7] in the early stages. Specifically, we will use the REMI [10] tokenizer, in which the
time is represented with "Bar" and "Position" tokens that indicate respectively when a new bar is
beginning and the current position within a bar, and a note is represented as a succession of a Pitch,
Velocity and Duration tokens.

With limited computation resources, we limited the sequence to 256 in the diffusion steps. We
invented a new padding method called "Bar-Block," which splits a midi file into several blocks with a
maximum length of 256 that start with a "Bar" token and end with padding tokens. Those blocks
with more than 20% of the padding tokens will be omitted. Besides, the first few continuous "Bar"
tokens in each block will also be removed to reduce empty bars in the output sequences.

Based on the Diffusion-LM experience [13], We used 16-dim and 32-dim random embeddings to
convert tokenized notes to embeddings, and a sequence of notes will be defined as EMB(notes) =
[EMB(note1), ..., EMB(noten)] ∈ Rdim.

5.2 Diffusion Model

A diffusion model[8] is a latent variable model inspired by non-equilibrium thermodynamics, which
defines a Markov chain xT ...x1 of diffusion steps with xT a Gaussian and x0 ∈ Rd. The diffusion
model gradually denoises the sequence of latent variables xT :1 to approximate samples from the
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Encoder Structure Dataset Tokenizer Embedding Dim Eval Loss (MSE)
Bert GiantMIDI-Piano Midi-Like 16 0.326
Bert GiantMIDI-Piano Midi-Like 32 0.1813
Bert GiantMIDI-Piano REMI 32 0.1373
Bert mono Structured 32 0.07542
Bert mono REMI 32 0.05387

Music Transformer mono REMI 32 0.2127
Table 1: Generation Task Metrics on 2800 steps

target data distribution. Each denoising transition xt → xt−1 is parametrized by a Transformer. As
derived by Diffusion-LM [13], in the generation task, we use mean-squared error loss

Lsimple(x0) =

T∑
t=1

E
q(xt|x0)

∥µθ(xt, t)− µ̂(xt, x0)∥2

where µ̂(xt, x0) is the mean of the posterior q(xt−1|x0, xt) and µθ(xt, t) is each latent variable
predicted computed by Transformer. The MSE loss is calculated on each single time step and perform
gradient updates on the Transformer parameters.

5.3 Time-Aware Transformer

We use a modified version of Transformer[21] inspired by Diffusion-LM[13] to predict the latent
variables in each denoising step. To prevent GPU resources from being exhausted by introducing too
large parameters in the diffusion process, we used 32-dim embeddings in our experiments. However,
to ensure that the Transformer is still large enough for self-attention and dense layers, we created a
learnable up-projection layer and a down-projection layer after the encoder to project the embedding
dimension to 768 and vice versa. Inspired by Diffusion-LM[13], we also introduced a sinusoidal
time embedding that indicates the denoising step in the embedding process. We experimented three
encoder structures from Bert[3], Music Transformer[9], and Longformer[2].

5.4 Time-Aware Classifier

A classifier is used to achieve the desired controllability of the diffusion model’s generated output.
In each denoising step, the diffusion model needs to query the classifier, do the backpropagation,
and quantitatively update the predicted latent variables by the Langevin function. We tried different
classifier structures in our experiments, including fully connected neural network, LSTM, Transformer,
and Music Transformer[9] on instrument and music composition labels. Because we were not satisfied
with the experimental results, we also pre-trained a modified BERT[3] by Masked-LM with more than
300,000 midi blocks of length 256 obtained by "Bar-Block" padding on the GiantMIDI-Piano[11]
dataset to achieve better midi understanding. This pre-trained model also has an up projection
layer and time embeddings but has no down projection layer since it was then connected to a fully
connected layer for classification.

To add time-aware ability, we integrated the Gaussian diffusion to the classifier model to generate
random noises on different time steps and added those noises to our training and validation samples
during training. This method also has some data augmentation effect.

6 Experiments

6.1 Denoising Steps and Generation

We experimented on two datasets as shown in table1: GiantMIDI-Piano[11] and mono-midi-
transposition-dataset[6], and three tokenizers Midi-like[15], REMI[10], and Structured[7], with
embedding dim = [16, 32]. Limited to the GPU provided on Colab and AWS, we could only exper-
iment with a token length of 256. The Gaussian diffusion uses step T = 2000, and we used Bert
Encoder[3] in our model. We found that the REMI[10] out-performs Midi-like[15] and Structured[7]
on average loss and output quality as in fig2.
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Structure Task Time Aware Accuracy (eval)
FC Instrument no 78%

Shallow Bert (hidden size=32) Instrument yes 59%
Shallow Bert (hidden size=32) Composition yes 51%

Bert (Transfer Learning with hidden size=768) Composition yes 42%
Bert (Pre-train + Fine-tune with hidden size=768) Composition yes 27%

Music Transformer + FC Composer no 23%
Table 2: Classifier Metrics

For the encoders, we tried Bert Encoder[3], Music Transformer[9] and Longformer[2] in our modified
Transformer Model. We found that by hidden layer size = 768, intermediate layer size = 3072, 12
encoder layers, and 12 self-attention heads, the Bert encoder outperforms the Music Transformer
encoder on 256-token sequences as in fig4. Unfortunately, our modified Longformer encoder was too
large to be trained on the provided AWS GPU. Thus, we used Bert Encoder in our further experiments.
We also found that the learned embeddings are meaningful by PCA, as shown in fig3.

6.2 Basic Controllability

We experimented with two easy controllability mechanisms: length control and infilling without
introducing classifier models, although they can be used together or with other classifiers. By
providing a sequence with desired note tokens on specific positions (masked on another input
sequence) and leaving all other undetermined notes as -1, the output sequence can achieve harmony
on provided and generated notes on the chord, velocity, and pitch. Similarly, by setting pad tokens
to positions greater than the maximum length, or the [EOS] note to the position that the sequence
should exactly end, we also achieved length control.

We did a classic LM-style experiment that asked the model to generate samples starting with [E4, E4,
E4, D4, C4] and no longer than 230 tokens. We found that the model successfully generated samples
with creativity on how to deal with those initial notes.

6.3 Classifier

We experimented with different classifier architectures as shown in table2 to classify instruments on
mono-midi-transposition-dataset[6] and music composition types on GiantMIDI-Piano[11] dataset.
The fully connected classifier was trained on the mono-midi-transposition-dataset[6] with Adam
optimizer, a batch size of 16, and a learning rate of 7e-4. The classifier achieves a 78% accuracy on
the test set on the 128 instrument classes. We found a significant label imbalance in these 128 classes,
so we narrow the labels down to 34 classes with at least 1000 samples. Similarly, we only chose
{Sonata, Variations, Prelude, Valse, Waltz, Morceaux, Mazurka, Etude, Rondo, Ballade, Fantasia,
Christian, Sonatina, Romance, Polka, unknown} as the labels of composition type on piano midi.

We then attempted a modified Transformer with time embeddings and transfer learning using the
parameters learned on our diffusion model and connecting it to a fully connected layer to classify the
instrument. By this approach, we found the model severely over-fitted on the validation set.

6.4 Pre-trained Model and Time-Aware Classifiers

We finally attempted to use a pre-trained model and fine-tune the model on the classification task.
Although there are some sophisticated pre-trained models for midi understanding, such as Mu-
sicBert[23], we found it used a different tokenizer than ours and was trained on much longer
sequences with large embedding dimensions and without time-aware structures. Thus, we defined a
new pre-training model with time embeddings, up projections, and noises superimposed on the input
note embeddings. We pre-trained the model from scratch on Masked-LM, with 12 hidden layers and
12 heads using more than 300,000 midi blocks of length 256 obtained by "Bar-Block" padding on the
GiantMIDI-Piano[11] dataset.

Then, we added a fully connected layer using the last hidden state to predict the composition
classification sharing the same parameters learned in the pre-training. Unfortunately, we only
achieved accuracy = 27% on the validation set.
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6.5 Classifier Guided Generation

We used the trained classifiers to do backpropagation and update the samples on each denoising step.
The sampling procedure is prolonged and takes more than 15 minutes to create a batch of 32 samples
using a Transformer-based classifier. In an experiment, we used a poor classifier to guide sampling
with Instrument = Piano (with label = 0) and got bad results. We then used a better classifier to guide
Composition = Waltz, Etude, and Fantasia and achieve relatively better results.

7 Results / Evaluations

7.1 Results

We offer music samples generated by our diffusion model on different tasks that can be listened
to. https://drive.google.com/drive/folders/1M5UF2O8Otml11vf9uEVYXiqVVJZkRAB0?
usp=sharing

7.2 Generation Tasks

As we are generating 256-note blocks of the midi files due to the lack of computation resources, we
suppose it is hard directly compare to the baseline models’ performance score. Compared to the
outputs of RNN, our outputs successfully maintain harmony on chord, velocity, and pitch on the
256 tokens, while RNN could hardly maintain consistency in several bars. On the other hand, while
the Transformer[21] maintains consistency in short output sequences, the Music Transformer[9]
out-performs on long sequences as in fig6. Compared to these Transformer architectures, our diffusion
model’s outputs have a closer distribution to the original distribution. It rarely generates inharmonious
samples but sometimes dull samples (e.g., repetitions or existing tunes) than the Transformer models,
especially without controlling guidance, but with much more creativity on challenging styles as in
fig7.

7.3 Controllability

We achieved controllability based on length, infilling, and classifications. To compare our infilling
with previous models, we infilled the notes at the beginning of the sequence to simulate a language
model. Our outputs more creatively melt the preset notes into the melody than the Transformer
models as in fig8. For example, while one output uses the first four notes as one pattern and the last
note as the start of another pattern, another output adds notes on the given notes and makes a long
melody. We speculate that this is because our Diffusion model only considers preset notes as a known
part of the target distribution, while Transformers rely on these preset notes to predict later notes,
thus tending to reuse this known pattern and losing creativity.

We did not achieve good performance on the classifier guided generation task. As we have frozen the
embeddings from the diffusion model, we suppose it might be sub-optimal for the classifier model.
We also find that the classifier-guided generations can work terribly under the guidance of a bad
classifier. For example, using an instrument classifier with an accuracy of 42% will cause the output
to be irregular and worse than vanilla diffusion model generations without guidance.

8 Contributions

We worked separately on finding available datasets. While Hao focused more on the Transformer
diffusion model and experimented on Colab and AWS EC2, Liwen focused on structuring and training
the classifier model. Hao also implemented and experimented with different Transformer structures,
the pre-trained model for classification, and the different controllabilities of the diffusion model.
Liwen researched and experimented with different classifiers and tried to utilize MusicBert. We both
handled midi data preprocessing, including tokenizing, padding, and embedding methods.
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Figure 2: Comparing Midi-like[15], Structured[7], and REMI[10]

Figure 3: PCA on embeddings learned by the diffusion model: greens, reds, purples, blues indicate
Pitch, Position, Duration and Velocity tokens

Figure 4: BERT encoder[3] VS Music Transformer encoder[9]

Figure 5: Experiments on GiantPiano[11] dataset

7



Figure 6: Samples generated by Performance RNN[20], Transformer[21] and Music Transformer[9]

Figure 7: Good samples generated by our diffusion model. Note that the composition style varies
with more creativity than the previous models

Figure 8: Different Infills starts with [E4, E4, E4, D4, C4]

Figure 9: Pre-training on Time Aware Transformer
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