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Abstract

We have created a multi-label image classifier, whose neural network architecture
bases itself off of vision transformers. It takes in inputs of 3D, axial, fMRI brain
images, and categorizes them as either healthy, or members of various neurodegen-
erative disease category. Neurodegenerative disease classifiers, working from MRI
data, are a well-explored space. However, not only are extant methods still domi-
nated by generally-less-performant Convolutional Neural Networks (as compared
to the pattern-finding abilities of transformers), far fewer classifiers have taken
on longitudinal studies and attempted to diagnose preclinical neurodegenerative
conditions. Our hope is that earlier diagnoses of these assorted neuropathologies
can lead to earlier interventions, and longer, healthier lives for a global population
whose age distribution is shifting older and older.

1 Introduction

Our work focuses on neurodegenerative disease. We are developing a diagnostic tool that works from
a dataset of clinically labeled structural brain imaging to attack a biomedical problem that we see as
both unresolved and computationally tractable for a discerning enough neural network.

Neocortical degeneration in various brain structures may begin to occur upwards of a decade1

before a patient could be diagnosed with full-on clinical Alzheimer’s Dementia. As a disease
with no known cure, but many effective prophylactic measures, diagnosing AD early on allows
us to preserve cognitive function and quality of life where otherwise it could have declined
precipitously. Most MRI-driven Alzheimer’s research has compared three categories of cortical
health through brain images – healthy brains (no neurodegeneration), patients with Mild Cognitive
Impairment (MCI), and patients with full-on Alzheimer’s Dementia where their symptoms
disrupt their daily lives. Despite the National Institute on Aging (include footnote) including
it within their recognized stages of Alzheimer’s Dementia, far less research has considered an
intermediate category lying between healthy and MCI patients. This is the Preclinical stage,
where patients exhibit no symptoms, but their neuronal structure already shows signs of dete-
rioration. These are the patients with the most therapeutic promise, yet we are under-diagnosing them.

The damages to Preclinical brains are subtle, so while existing MRI-based deep learning models
capable of prognosticating Preclinical AD boast impressive detective abilities, there is always room
for refinement. This is especially true in a literature that is still very much dominated by Convolutional
Neural Networks, that fail to take advantage of Transformer’s attention features. Using a longitudinal
neuro-imaging, clinical, and cognitive dataset named OASIS-3, we are therefore aiming to create a
multi-label, vision transformer image classifying tool.

1https://www.nia.nih.gov/health/alzheimers/causes
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It takes in MRI imaging from 1,098 individuals collected over the course of 15 years. The dataset
contains 2,000+ sessions of MRI data, and we will be using images from the axial plane. Patient ages
range from 42 to 95 years old. Our tool will classify brains into five categories:

1. Healthy Brains (No dementia)
2. Preclinical Alzheimer’s dementia
3. Preclinical otherwise Dementia (Vascular Dementia, Normal Pressure Hydrocephalus, etc.
4. Alzheimer’s dementia
5. Otherwise dementia

To quote the paper that was our primary inspiration for our project, which also only used brain
imaging data to try and diagnose preclinical stage Alzheimer’s, inability to "adapt the models to
different factors that could be critical when predicting AD, such as the age or the sex of the patient...
makes the classification task more challenging." Yet the ubiquity of the MRI in data collection of the
potentially brain damaged, as compared to other rarer measures like genetic sequencing of patients, or
PET scans, or answers to the TADPOLE Challenge questionnaire, emphasizes the value of predicting
neurodegenerative disease from exclusively MRI data.

2 Related work

Preclinical Stage Alzheimer’s Disease Detection Using Magnetic Resonance Image Scans

This paper will be our primary source as it proposes a neural network architecture employing MRI
data to predict preclinical AD. Their approach clearly has virtues, as they were able to obtain an
accuracy score of over 90 percent. The paper has very few citations, however and is very recent,
which speaks to the small volume of research currently funneled into the ambitious task of preclinical
dementia diagnosis. Although we are employing the same Oasis-3 longitudinal dataset, we are trying
to better appreciate the range of its clinical labeling – this original study’s tool simply binarizes
preclinical Alzheimer’s Dementia brains versus otherwise brains. We are training a tool that can
better diagnose a variety of neurodegenerative conditions, and is forced to learn features that enforce
strict borders between them. This is essential, because the treatment paths for preclinical Alzheimer’s
dementia, versus the early stages of other neurodegenerative conditions (vascular dementia for
instance), can vary significantly.

Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible
evaluation

This paper proposes a model architecture using CNNs to classify AD amongst MRIs. It does not use
the transformer architecture with self-attention, opting rather to use CNNs all the way through. While
its approach can no longer be considered state-of-the-art, learning from different model architectures
may give us insights into how we can tweak our architecture to fit out needs. Our attention units
and queries are better modeling internal relationships amongst our parameters and data, but this
paper got us started. Its discussion of the distinctions amongst 3D versus 2D processing of the image
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data were particularly useful. The paper also provides a systematic literature review of the extent
MRI-analyzing CNN models in current academic circulation for diagnosing AD.

Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer’s Disease
using structural MR and FDG-PET images

This article describes the multi-modal employment of both MRIs and PET data to capture both
structural and functional data. We wanted to evaluate the diagnostic efficacy of this joint approach,
pre-processing the MRI data and then co-registering the PET images, which have the exact same
dimensions and are obviously of the same brain, with a rigid transformation using FSL-FLIRT. We
chose to forego this multi-modal approach for two reasons: first, its reported accuracy is not superior
to the first paper we were citing (our greatest inspiration). Secondly, it requires both metabolic
and structural imaging of each brain, and we want our tool to be utilizable in as many situations as
possible (i.e. when just MRI images are available).

Alzheimer’s Disease Diagnostic Guidelines

This National Institute of Health paper did a good job of giving us the lay of the land regarding how
clinicians label their patients’ cognitive abilities. This is a higher level paper, presenting no technical
tool, but at least gave us a greater sense of the behavioral changes doctors were identifying, that
produced the labels for the images we are computing on.

A Deep Siamese Convolution Neural Network for Multi-Class Classification of Alzheimer Disease

This is yet another CNN-based model. Its unique utility to our project, however, was its
strategies to avoid overfitting, training its model as it did on a small dataset (one of the OASIS
datsets, but not OASIS-3 like we used). They had greater need to data augment, due to their
only having 382 images in their data set. The below image details their augmentation techniques,
per image, that they used to enhance the generalizability of their model to a test set (and
actual patient diagnoses). We were originally rotating our images more significantly than ten
degrees in our own augmentation testing and it was drastically reducing our accuracy, so their
augmentaiton guidelines were of great help. This CNN also classifies multiple states, with No
Dementia (ND), Very Mild Dementia (VMD), Mild Dementia (MD), and Moderate AD (MAD),
so it is exhibiting the more-general-neurodegenerative-diagnosability that we are looking for
in a tool. Again, however, it fails to exhibit the Transformer architecture we are aiming for.

A Transfer Learning Approach for Early Diagnosis of Alzheimer’s Disease on MRI Images

This paper proposes a transfer learning approach, to account for the small dataset environ-
ment often common to the biomedical imaging space, due to privacy concerns and differences in
imaging techniques/patient populations. It transfers over a pre-trained model from the VGG family
architecture, that was trained on the ImageNet Large Scale Visual Recognition Challenge benchmark
to classify 1,000 different objects. The study authors then customize the last two fully connected
layers, and obviously the final classification layer to the problem of diagnosing the same four stages
of dementia from above (ND, VMD, MD, and MAD).
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3 Dataset and Features

As we said in the introduction, we used the OASIS-3 dataset2. From OASIS-3, we processed 2,191
MRI scans from 1,172 different patients, aged 42 to 95. For each MRI scan, we used a script to
cross-reference it with OASIS-3’s database of Aging and Disability Resource Center (ADRC) clinical
diagnoses. These diagnoses included the following classes: "Cognitively Normal," "AD Dementia,"
"Vascular Dementia," and "Uncertain Dementia." Of the 2,191 scans, only 103 were labelled as one of
the dementia labels, and there was no preclinical labeling. As such, one of our major pre-processing
tasks was to write a script that re-labled our data to consider preclinical neurodegenerative disease
an actual labling class. The way we did that was to consider all "healthy brain" scans of a patient
who later demonstrated dementia to be "preclinical dementia" images. Given that the upper-bound of
time difference between any first and final image for a patient was around ten years, and neocortical
degeneration is hypothesized to begin at least a decade before behavioral effects manifest, we consider
this labeling judgment fair. It makes us confident that we are creating a tool whose loss function, with
the preclinical classes, is actually leading the model to learn the very subtle necortical-degenerative
image features that underlie preclinical dementia. After data relabelling, we ended up with 1590
patients who were "Cognitively Normal" and 601 who were either preclinical or had full-on dementia.

4 Methods

4.1 Data Processing

As mentioned in the Dataset section, we obtained 2191 MRI scans from the OASIS-3 database. We
also obtained two CSV’s, one matching MRI scans to patient IDs and one matching patient IDs to
ADRC diagnoses. We then used a script to automatically match each MRI scan to a corresponding
diagnosis within one year of the scan. This script gave us our labels file, matching each scan to an
ADRC diagnosis.

However, since the ADRC diagnoses do not include prelinical data, and sometimes contained
irrelevant information (e.g. AD Dementia w/ depression; non-contributing), we wrote another script
to relabel the diagnoses into our desired five classes: Cognitively Normal (CN), Other Dementia
(OD), Alzheimer’s Dementia (AD), Preclinical OD (PO), and Preclinical AD (PA). We then wrote a
script to populate the labels file with one-hot vectors corresponding to each class. We also wrote a
script to rename all the files and the MRI entries in the labels file to match.

2https://www.oasis-brains.org/
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Each MRI scan was given in .nii.gz medical imaging format and contained data for a 3D image of the
whole brain. Since we did not have the capability to work with 3D data, we took axial slices of each
image (slicing along the Z axis) and used those 2D representations as our input. Since our dataset
was so large, we were only able to use the middle 6 slices of each image with the storage space and
compute power that we had. We then resized each 2D slice into a 1x256x256 array, with 1 being the
number of channels (grayscale).

Since the vast majority of images were cognitively normal, we used data augmentation to increase
the number of samples of prelinical and demented patients. For each demented scan, we generated
three rotated images (with the rotation not exceeding ten degrees), and for each preclinical scan, we
generated ten rotated images. We then undersampled from the cognitively normal class to balance
out our data distribution.

We then built our data into numpy arrays and split it into 70% train, 15% validation, and 15% test,
making sure that no patients’ multiple scans were split in the process.

4.2 Model

Since the original transformer was designed for sequence-to-sequence language models, it has to be
adapted to work with image data. To convert each image into a sequence, we use a patch embedding
layer similar to the idea mentioned in Figure 1:

Figure 1: Vision Transformer architecture

Our model architecture consists of the following three layers: Patch Embedding, Transformer Encoder,
and Output.
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4.2.1 Patch Embedding

The input is first fed into the patch embedding layer. For each 1x256x256 image, we break it up into
16 patches. Then, each patch is flattened and linearly projected into the model’s hidden size so that
it can be fed as a sequence to the transformer encoder. However, before passing it to the encoder,
we add an extra trainable parameter to each patch-sequence whose sole responsibility is predicting
the class at the end. Furthermore, for each of the patch-sequences, we imbue a trainable relative
positional embedding that encodes where the patch was in the original image.

4.2.2 Transformer Encoder

The transformer encoder consists of three (a hyperparameter we tuned) encoder blocks where the
first block’s output is fed into the second block’s input and so forth. In each encoder block, the input
is first fed into a layer norm. Then, Query, Key, and Value tensors are derived from the input by
feeding the input through a linear projection layer that triples its size. The Q, K, and V are then fed
through a multi-head attention layer with 2 heads (another hyperparameter). A residual connection is
implemented before and after the attention layer. The output is then fed through a layer dropout layer
(randomly dropping the residual connection). Then, the output is fed through two fully-connected
layers, with a residual connection over them, using leaky ReLU and dropout after the first FC layer
and a layer dropout after the second layer. Finally, the output of all three encoder blocks are fed
through a layer norm layer.

4.2.3 Output

Before the transformer output is fed to the output layer, the class token we implemented in the patch
embedding is extracted, and this singular token is fed to the output layer. The output layer is a
standard multiclass classification layer, including a layer norm, a linear layer projecting to the number
of output classes (5), and finally a softmax layer.

5 Experiments/Results/Discussion

We used Adam for our optimizer with standard Beta1, Beta2 and a learning rate of 0.005. We arrived
at this learning rate after much experimentation, having both dramatically over and under-shot it. At
this magnitude, the learning rate was just small enough to stop the model from overshooting and just
big enough (not 0.001) to get out of plateaus/generally expedite learning. Our mini-batch size of 128
struck a good balance between the subtle regularization you get from batch sizes small enough to
introduce general noise to the measurement, and one big enough to smooth out the parameters in
any individual batch. We used Crossentropy loss. We found that training didn’t improve past 50 or
so epochs, and so set our number of epochs to be 50. For our metrics, we used Accuracy, Precision,
Recall, and F1.

At first, we obtained what seemed like promising results, with a val/test accuracy of 76/66%, with
our formula for accruacy being simply how many instances of yhat have the same argmax as the
corresponding instances of y. However, we found that the model was simply predicting "Cognitively
Normal" for everything since there was a large data imbalance. As such, we used data augmentation
to produce roughly equal sample sizes for each class, ending up with around 1000 samples of each
class. We also switched over to using the official Pytorch metrics. When we ran our model again,
with both the augmented data and the original data, we found that accuracy stayed at 0.2 the entire
time, effectively meaning that the model is just randomly guessing. We checked to make sure that the
gradients were being properly backpropogated, and though they were, we found that all the gradients
quickly approached zero as training continued. This looked like the vanishing gradient problem,
which we attempted to solve with more regulation, but were unable to make any progress. If we were
to have more time, we would continue debugging.

We have several possible explanations for why our model would not train correctly:

1. Our model architecture is not robust enough for image data.
We assumed that by taking 2D axial slices of the MRI data, we would be able to treat each
image like a normal image commonly used in image classification scenarios. As such, we
implemented a version of the vision transformer. However, it is possible that this architecture
is too simple to successfully model multiclass dementia prediction from MRI scans.
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2. In order for complicated MRI data to be used with image classification, it first has to be fed
through a massive pre-trained network.
The authors of the binary preclinical classification paper first fed their input through VGG-16
before feeding that output into their own architecture. This is so that VGG-16 can handle
most of the image classification parts, and the transformer can adapt to the more MRI-
focused nuances. However, we did not have the compute power for VGG-16, and were
unable to get our data onto AWS as the data files were too large.

3. Not enough data
Since only around 80 scans were considered preclinical and only around 400 scans were
considered demented, there was a significant class imbalance. Even with data augmentation
rotating these images, there are still very few unique preclinical images for the model to
learn from. Perhaps we need a larger dataset with more balanced classes to accomplish
significant training.

We are pretty sure the problem does not arise from our hyperparameter choices, as we experimented
with batch sizes between 4 and 256, learning rates between 0.0001 and 0.01, different optimizers
such as SGD, different number of heads, different hidden sizes, etc. As such, we have diagnosed
our problem to be a fundamental incapability of our model to work with complicated MRI data on
limited computational resources.

Here are some of the failed training graphs that we had:
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Our final metrics were train/val accuracy = 0.25, train/val F1 = 0.22/0.20, train/val precision =
0.17/0.2, and train/val recall = 0.2. Our test accuracy, precision, recall, and F1 were 0.2, 0.16, 0.2,
0.17.

6 Conclusion/Future Work

6.1 Conclusion

It is difficult to make any algorithmic comparison between our and other tools, primarily Convolutional
Neural Networks, on account of differences in data composition, augmentation strategies, and
numbers of classes to classify. We could not realistically expect the same predictive accuracy from
our classifier as many of the tools circulating in the literature, because their usual classes of mild
cognitive impairment and full-on dementia present as much more dramatic changes in neocortical
volume than any preclinical conditions do. It is nonetheless reasonable to expect that our model be
able to adapt to MRI data with a standard vision transformer architecture. Our implementation does
train, so we are fairly certain that the majority of the problem comes from our data pre-processing,
due to the complicated nature of MRI data. While our tool still has much to learn much about the
relationship between preclinical dementia and structural brain shifts, we have learned much about the
importance of rigorous data curation. Since we both believe in the importance of this topic, we will
continue to work on the model after the class finishes to steer it towards better feature learning.

6.2 Future Work

Besides fixing our model/dataset, we would explore multi-modal approaches for neuro-degenerative
disease classification – especially tools resembling our third reference, that jointly analyze both fMRI
and PET scans to diagnose disease. In preclinical dementia, the shifts in neocortical volume are so
small that learning to recognize them at the exceptional rate one would want from any medical tool,
affecting peoples’ future paths of treatment, probably requires a ton of data. However, adding the
metabolic information that PET scans measure opens opens up a whole new channel of discernment,
where you could train a model both on structural changes, and shifts in glucose concentrations
throughout regions in the brain.

7 Contributions

The work distribution was fairly balanced in all of the sections – though James did more of the
computational work and Alex more of the report. Alex has a biocomputational background and James
had taken a course on transformer architecture before, so we had different expertises that we had to
both explain to one another to get each other up to speed.
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