
Deep Bayesian Recommendation Systems

Dmitri M. Saberi
Department of Mathematics

Stanford University
dsaberi@stanford.edu

Sal R. Spina
Department of Computer Science

Stanford University
salspina@stanford.edu

Abstract

When users interact with a website, typically their (retail product, movie, song,
or social media account) recommendations will come from a model of rewards
based on user behavior, as well as uncertainty in those predictions. The presence
of deep neural networks can lead to better recommendations, but with the caveat of
more difficult and costly uncertainty estimates. Importantly, modeling the risk in a
recommendation helps to better navigate the explore/exploit tradeoff, i.e., to decide
whether to recommend similar or new, novel content based on available context.
In this paper, we explore using approximate Bayesian Neural Networks to yield
better approximations of reward uncertainties, and implement our method with
both Thompson Sampling and Upper Confidence Bound policies. We compare
results across a variety of baseline methods from the literature.

1 Introduction

Recommendation systems (RS) are one of the most widespread and successful applications of modern
machine learning. Widely impactful in social media [7], multimedia streaming services [13], retail
[3], and many other sectors, RS engines often drive the way we interact with products in the era of
big data. The immediate applicability (and profitability) of such systems has driven much research
into incorporating all sorts of cutting-edge ML techniques. The generic RS setting rests well in the
formalism of reinforcement learning (RL), and can be stated as follows: a user accesses a site at times
t ∈ T . At time t, there is a set of actions a ∈ A (e.g., recommended products, articles, or movies)
that an engine could propose to the user. For each potential action a ∈ A, we have access to some
features xt,a (e.g., user click data), and there is some (stochastic) reward associated with enacting a,
namely rt,a. We then posit a model fθa of the expected rewards, and can pose the supervised learning
problem:

find θ⋆t such that fθ⋆
t
(xt,a) ≈ E[rt,a|xt,a]. (1)

This is known as a multi-armed contextual bandit problem [10]. There are (speaking roughly) two
main design choices here: (i) model architecture/training for fθ, and (ii) deciding how to choose
an optimal action a ∈ A based on the predicted rewards fθ⋆(xt,a). We will discuss several popular
design choices for (i) that have been proposed (and used successfully) in the next section, so let us
focus on (ii) for now. The metric associated to our choice of action is cumulative regret:

R(T ) = E

[
T∑

t=1

(rt,a⋆
t
− rt,at)

]
which we aim to minimize. Here, r⋆t,a⋆

t
is the largest true reward among all {rt,a}a∈A at time t. An

equivalent objective is to maximize total expected reward.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



Once we have produced a stochastic estimate of the rewards r̂t,a := fθ⋆(xt,a), the naïve greedy
approach is to pick action at := argmaxa∈A r̂t,a. But this poses a problem, namely that such
recommendation engines would typically recommend only products that are very similar to products
that the user has recently interacted with. In addition to being able to exploit our knowledge about
user preferences, it is also crucial to explore the action space and give novel suggestions (this will,
in turn, give us more information about user preferences). In order to do this, we need to quantify
the uncertainty in our predictions, i.e., estimate properties of the posterior distribution p(θt|Dt),
where Dt is the available data at time t. One approach is called Thompson Sampling (TS): we
sample θpost

t ∼ p(θt|Dt), and predict rewards as r̂t,a := fθpost
t
(xt,a). Then we pick the action a ∈ A

maximizing predicted rewards. Another (deterministic) approach is called the upper confidence
bound (UCB) algorithm. In this case, an approximate confidence interval is constructed, so that
rt,a ∈ (r̂t,a − σ̂t,a, r̂t,a + σ̂t,a) with high probability. Then, the action is chosen to maximize the a
weighted sum of risk and return:

at := argmaxa∈A Ût,a := r̂t,a + γtσ̂t,a. (2)

If we have an approximate posterior p(θt|Xt, yt) over the parameters, then estimating the standard
deviation σ̂ would be one possible approach (used, e.g. in [9]). Other common approaches use a
Chernoff-based bound. Generally, it becomes more difficult to obtain more accurate confidence
intervals as the model fθ gets more complex. For example, it is extremely difficult (or in some
cases, intractible) to sample from the posterior distribution of a Bayesian Neural Network (BNN)1.
But there has been recent work [12, 5] on more accurate and scalable (approximate) BNNs, and
more generally, on uncertainty quantification in deep learning [1]. We focus on improving deep
FCNN uncertainty quantification, towards the end of better navigating the explore/exploit tradeoff. In
particular, we apply the Laplace approximation to achieve more accurate knowledge of the posterior,
hence (hopefully) improving TS and UCB performance for FCNN reward predictions. We view this
as especially crucial in the large-data regime, i.e. with many high-dimensional features, as FCNNs
will learn more intricate relationships between different arms.

2 Related work

We discuss a few categories of approaches that have been applied to the problem (1). To our
knowledge, the state-of-the-art for our setting is given by Murphy et. al, as described below in the
Hybrid-neural-linear section.

Linear bandits. First introduced in [9], the linear approach simply uses the model fθ(xt,a) = θ⊤t xt,a.
There are several clear benefits: for reward estimation, this approach permits an explicit solution
for θ⋆t,a via ridge regression. There is also a closed form posterior distribution for ridge regression
with Gaussian noise, which allows for exact uncertainty quantification for UCB, and better posterior
samples for TS. Additionally, due to its simplicity, this model is also extremely efficient. Of course,
the tradeoff is that it has very limited expressibility and can’t model complicated reward functions
well (e.g., assumes that the arms are independent, while in practice they are highly correlated).

Neural bandits. The most prominant example of using fully connected neural networks (FCNNs)
to model returns in the current setting is given by Zhou et. al [14] in their NeuralUCB algorithm.
Roughly, the only main difference between their approach and ours is that their upper confidence
bound is adaptively estimated using gradients of the network based on an analytic bound for their
approximate interval. They achieve near-optimal regret bounds, and strongly outperformed LinUCB
empirically (on the MNIST dataset, as well as covertype, magic, and statlog from the UCI ML
Repository). We did not have time to benchmark against their method, but plan to for future work.

Hybrid neural-linear bandits. This category subsumes a variety of approaches. First, and truest to
the name, there is the NeuralLinear algorithm introduced in [11], which uses a neural network as a
feature extractor with a linear layer on top. There is also a variant of NeuralLinear that approximates
the old covariance of context that is outside of the memory buffer, to avoid “catastrophic forgetting”.
We refer to this as NL − Lim in our benchmarks. Finally, the best performing methods to our

1Here, by a Bayesian neural network we simply mean a neural network where the parameters are assumed to
be stochastic, and are given a prior distribution.

2



knowledge are the EKF-based methods proposed in [4], which roughly uses a Kalman filter to
optimize a low-dimensional linear projection of the neural network parameters, and propogates a
normally distributed belief state over time. That is, they sample z ∼ N(µt,Σt) at time t, compute
θt = Azt + θ∗ to get the neural network parameters, and use the neural network to infer the expected
rewards as a function of z. They then use the extended Kalman filter update to get (µt+1,Σt+1) from
the context. This method worked extremely well on MovieLens (in comparison to the other baselines
listed here, sans NeuralUCB), in addition to MNIST and a variety of tabular datasets.

The closest relatives of our algorithm are NeuralUCB and NeuralLinear. Our key distinguishing factor
is our focus on more accurately modeling the posterior distribution, and in particular obtaining better
confidence bounds for UCB (moreover, NeuralLinear doesn’t train the FCNN for inference, just for
feature extraction). LinUCB enjoys exact Bayesian inference, and thus obtains accurate confidence
intervals in this manner. However, this is not numerically tractible for deep neural networks.

3 Dataset and Features

We use the MovieLens dataset, adapted from Murphy et. al’s implementation2 [4]. MovieLens is a
standard dataset used for prototyping movie recommendation engines based on user behavior. The
dataset consists of ∼100K ratings on a 1− 5 scale from 943 users on 1682 movies. We followed the
data augmentation procedure of Murphy et. al [4], which is as follows: we compute a dense rank
r SVD approximation UrΣrV

⊤
r ≈ X , then Xij (the rating user i gives to movie j) is the reward

associated with context ui. Note that the 943× 1682 data matrix is sparse (i.e., there are quite a few
movies that each user has not seen in the data matrix), so a low-rank approximation is appropriate.
We construct a rank 50 approximate SVD for our purposes (so our feature size is 50).

Since we are in RL setting, all agents re-train based on available context. With this in mind, we split
our data 80− 20 between training and validation sets. We used the training set to make our design
choices (e.g., tune hyperparameters, change model architectures, iterate on the algorithm, etc.), and
used the testing set to evaluate reward and train in an online setting on previously unseen data. Thus,
models still train on the validation set (to incorporate new available contexts) but we do not adapt the
model or optimization configuration after exposure to the validation data. As a note, Murphy et. al
[4] do not incorporate a train/test splits for MovieLens in their paper (it seems that they opted to use
several datasets for their method instead).

4 Methods

We first model rewards by a fully connected neural network, the same approach as [14]. Then, after
training the network to yield parameters θt, we use a Laplace approximation to model the posterior
distribution of the neural network in lieu of exact posterior inference:

p(θ|Xt, yt) = N(θ; θt,∇2L(θt)−1).

However, even this appoximation is intractible for deep FCNNs, since even small FCNNs will have
(at least) thousands of parameters, and sampling from Gaussians (with dense covariance matrices) in
that regime can be very costly. A typical approximation that is made for numerical effiency is just
adopting a “last-layer” Laplace approximation [8], where the posterior distribution is only over the
last-layer parameters of the FCNN (and all others are frozen at inference time). This is described
in Algorithm 1. Approximate knowledge of the posterior is sufficient for TS, which is one of our
subroutines; to do UCB, we first partition the parameters as θt = (θ<L, θ

MAP
L ). We view θ<L as

“fixed” frozen parameters, and θMAP
L as the maximum a posteriori (MAP) estimate for the last layer

as obtained by the training. so we can compute fθ<L(xt,a) for each action. Then, we have that our
estimated rewards will be (approximately) distributed as:

r̂t,a = fθt(xt,a) = θ⊤L fθ<L
∼ N(fθ<L

(xt,a)⊤θMAP
<L , fθ�L

(xt,a)⊤ΣL
a fθ�L

(xt,a)). (3)

We note that there are several potential extensions and modifications to this algorithm. Although we
opted for last-layer Laplace as a first concept for this type of approach, one could do a full Laplace
approximation, or an approximate Kronecker product Laplace approximation as described in [5] as

2https://github.com/probml/bandits

3



Algorithm 1 BNN-UCB-LL and BNN-TS-LL
Require: γt > 0, learning rate η > 0, policy π, number of training epochs N , regularization λ > 0,

neural network fθ with L > 0 layers, number of arms A
for t = 1, . . . , T do

partition θt = (θ<L, θL) ▷ θL are last-layer parameters
Estimate ΣL := ∇2

θL
L(θ<L, θL)

−1, holding θ<L fixed
if π is TS then

Sample θpred
t ∼ N (θt,Σ

L)
Pick at := argmaxa∈[A] fθpred

t
(xt,a)

else
if π is UCB then

Predict r̂t,a = fθt(xt,a)
set Ut,a := r̂t,a + γtfθ�L

(xt,a)⊤ΣL
a fθ�L

(xt,a)
pick at := argmaxa∈[A] Ût,a

end if
end if
observe rt,at

update Xt := [X⊤
t−1, xt,at

)]⊤, yt := [y⊤t−1, rt]
⊤

θt+1 = AdamOpt(fθ, Xt, yt, η,N)
end for

an alternative. We expect methods of this nature to perform even better, especially on larger datasets
with access to more compute. In these cases, one would replace the estimated reward distribution (3)
with an approximation of the posterior predictive distribution.

5 Experiments/Results/Discussion

We used FLAX (a JAX-based neural network library [6]) and OPTAX (a JAX-based optimization
library [2]) for our implementation. For our model architecture fθ, we used a fully-connected neural
network with two layers, a ReLU activation, and hidden layer size of 50. We trained using the
Adam optimizer with an ℓ2-loss, a learning rate of 0.1, and an ℓ2-regularization of 0.7 for 10 epochs.
Following Murphy [4], we perform all baseline experiments (except LinUCB) with two different
feature extractors, a one-layer (MLP1) and two-layer MLP (MLP2) that are trained during warmup.
We do not use these feature extractions for our method, and relative performance is not impacted
too much. We found that since we were learning in the online setting with a fairly small neural
network, increasing the learning rate was helpful. Additionally, since overfitting in the adaptive
online setting would be typical of a deeper model, we found that higher regularization was helpful in
achieving better results. For the same reason, the number of epochs could not be too high (when it
was, performance degraded significantly). Interestingly, SGD did not work nearly as well as ADAM
for our experiments; we expected the added stochasticity to be helpful, but it did not end up being the
case. We experimented with larger FCNN architectures (e.g., hidden layes of size 64, 32, 32), but this
did not increase performance, likely due to the dataset being relatively small.

4




	Introduction
	Related work
	Dataset and Features
	 Methods 
	Experiments/Results/Discussion
	Conclusion/Future Work 
	Contributions
	Acknowledgements

