Screening COVID-19 by Cough Audio Data Using
Attention-Based Convolutional Recurrent Neural

Networks
Chris Gu Nantanick Tantivasadakarn
Department of Computer Science Department of Computer Science
Stanford University Stanford University
cgu260@stanford.edu nantanic@stanford.edu

Serena Zhang
Department of Computer Science
Stanford University
serena2z@stanford.edu

Abstract

The importance of accurately classifying coughs lies in the potential for automatic
detection of COVID-19, which can aid in disease control and mitigation efforts.
Previous literature has primarily focused on converting cough audio data into
spectrograms used to train convolutional neural networks (CNNs). In this study,
we examine two CNNs, a convolutional recurrent neural network (CRNN), and
a CRNN with novel multi-head self-attention. The results show that the CRNN
and CRNN with attention models achieved the highest area under the curve (AUC)
values, with AUC scores of 0.88 for both. This suggests that models that can
analyze the temporal aspect of inputs may be best suited for this classification
task. However, the addition of attention did not seem to significantly improve
performance.

1 Introduction

Since the start of the COVID-19 pandemic, many diagnostic tools have been developed to provide
quick screening for COVID-19. The two standard COVID-19 tests, the PCR test and the rapid antigen
test, while efficient and accurate, can be economically taxing or inaccessible. Our project aims to
solve this problem by screening for COVID-19 through audio-recorded coughs. This method allows
for a free, efficient, and effective alternative to traditional diagnostic methods.

The input to our algorithm is an audio clip of a cough, which we turn into a Mel spectrogram
(frequency by time image) using Fourier Transforms. We then run the data through 3 models of our
own design: a Convolutional Neural Network (CNN), a Convolutional Recurrent Neural Network
(CRNN), and a CRNN with a novel attention mechanism, to output a prediction of COVID-19 or
healthy.

CS230: Deep Learning, Fall 2022, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2 Related work

There has been a recent interest in using audio data to diagnose COVID-19. Coughs, breathing
patterns, and speech have been studied in detecting the disease (L). In the scope of this study, we will
mainly focus on cough sounds.

There are 4 main datasets found in the literature we have reviewed: COUGHVID (2)), Virufy (3),
Cambridge (4), and Coswara (5). Previous works first did feature selection of the audio data, usually
in a Mel-scale spectrogram (3;6). Other methods such as Tonal Centroid, Chromagram, and Spectral
Contrast were also used in (6). They then applied machine learning models to classify the cough
sounds. Chaudhari et. al. (3) created an ensemble model of Convolutional Neural Networks (CNN)
and fully connected models with varying features. Chowdhury et. al. (6) took a similar approach but
also included non-deep learning methods such as XGBoost and random forest in their model. This
work used the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method to
rank and combine the results of each model, which resulted in a better result (AUC = 0.92, over AUC
= 0.72) on multiple datasets including Cambridge and Coswara. Esposito et. al. (7) did an ensemble
of Convolutional Recurrent Neural Networks (CRNNSs) adapted from the basic CNN architecture
of Visual Geometry Group 13 (VGG13) (8). They modified the VGG13 architecture by eliminating
global average pooling in their convolutional layers, which preserves temporal information. Their
ensemble of a CNN, CRNN, Gated-CNN, and Gated-CRNN achieved an accuracy of 65.28% on
COUGHYVID. No other metrics or datasets were reported. Chaudhari et. al.(3) briefly mentions the
consideration of Convolutional Recurrent Neural Network (CRNN) to analyze cough audio data, but
they did not end up using it in their research, nor did they describe any details of a CRNN. Hamdi et
al. (9) were the only ones who implemented a hybrid CNN-LSTM and an attention-based hybrid
CNN-LSTM, the latter of which achieved an accuracy of 89.3%.

As there is no clear benchmark in the literature, it is difficult to compare results across studies).
Multiple works use a different combination of multiple datasets or different metrics. For example,
Chaudhari et al. (3), combined results of COUGHVID and Coswara (AUC = 0.771). Esposito et
al. (7)) combined COUGHVID, Coswara, and Cambridge (Accuracy 65.28%). Chetupalli et al. (10)
combined results from COUGHVID as well as speech and breathing samples (AUC = 92.40). Thus,
we were unable to establish which of these studies is the "state-of-the-art" nor determine which
architecture is best suited for this task. Nevertheless, CNNs are the most prevalent deep-learning
architectures, so we will be using them as our baseline.

For our model, we will be taking inspiration from (9), which uses a combination of CNN-LSTM
and attention mechanism to predict coughs, as well as the success of multi-head self-attention in
Transformer models for Natural Language Processing (11)).

3 Dataset and Features

We used the COUGHVID dataset (2), a crowd-sourced collection of 25,000 cough recordings. The
dataset contains metadata on the age, gender, and status (healthy, COVID-19, or symptomatic) of
the subject. Each cough recording also has a "cough-detected" probability derived from the original
Nature paper where the authors trained a XGB classifier to perform cough classification.

Of the 25,000+ cough recordings, we filtered for samples that were labeled (self-labeled or by
experienced physicians) and had a cough-detected probability > 0.8. This gave us a total of 13,535
samples: 720 COVID, 10,132 healthy, and 2,683 symptomatic. Of those, we removed 788 corrupted
audio files (475 healthy, 20 COVID-19, and 293 symptomatic).

In our early experiments, we used all data points and all three classes to train our models but got
poor results. We suspected the symptomatic data may have been ambiguous and interfering with the
results, so we tried excluding them in our subsequent experiments. We also suspected that the healthy
to COVID-19 dataset imbalance was interfering with training our model, as the model was classifying
everything as healthy. In addition to methods such as weighting the loss of each class proportional
to its prevalence, we tried creating multiple datasets to test our hypothesis. In the end, we settled
on using a balanced dataset with 3500 COVID-19 samples and 3500 healthy samples, where we
over-sampled the COVID-19 samples. (We arbitrarily decided that we don’t want covid samples to be
augmented more than 5 times). The train, validation, and test distribution for our dataset are shown in
the diagram above as Figure

Original Coughvid Dataset COVID-19 vs Healthy Balanced
9000 4000
B healthy = healthy

soo0{ 7821 BN symptomatic 3500

. covid

7000 2000

6000
2500

5000
2000
4000

Number of samples

1500

Number of samples

w
&
°
°

2000

1000

train val test train

Figure 1: Graphs of Dataset Distributions

The audio files were originally given as .webm/.ogg files, for which we converted all to .wav files.
For pre-processing, we re-sampled the audio to a sample rate of 16,000 Hz, collapsed the channel to
mono, padded shorter audio clips, and cut longer audio clips to be of the same length.

Spectrogram for Healthy Cough Spectrogram for Covid Cough

400
frame frame

Figure 2: Mel Spectrogram Input

We augmented the audio data using pitch shift, colored background noise, time inversion, and polarity
inversion. Then, we converted the audio to a Mel spectrogram using fast Fourier transforms extracting
frequency and amplitude with respect to time. The hyperparameters we used for the Fourier transform
were n_fft = 1024 (length of the FFT), hop_length = 512 (distance between each successive FFT
window), and n_mels = 128 (shape of output). Figure [2]displays a couple of examples.

4 Baseline

For our baseline, we will be comparing our models to the reported scores in (95 [3). To account for
differences in data processing, we also created two CNN models for comparison. The first is a "Small
CNN" with 4,681 trainable parameters, which we built according to (12) (Accuracy = 95.18). The
second CNN model used a similar CNN architecture in (9), which we will call "Large CNN", (with
161,122 parameters), in order to save time on adding LSTM and attention sections in later sections.
We lr = le — 4, 1e — 5, weight decay, and 0.2 dropout for hyperparameters. There are four layers
in the CNN, with each layer encompassing a convolution kernel, a Rectified Linear Unit (ReLU)
activation, and a max-pooling kernel, followed by batch normalization. The overview architectures of
both models are shown in figure 3] and their results are in Table[I] A detailed visual describing each
model’s convolutional layers is referenced in appendix section[C|as Figure [8]and Figure[9] and tables
representing the models’ full architecture with dimensional information are also referenced in the
same section as Figure[T0]and Figure [T}

5 Methods

We propose a novel combination (CRNN + Attention) of convolutional layers, Long Short-Term
Memory (LSTM), and multi-head self-attention. The CNN portion of the model is meant to capture

0.9

Small CNN Model Large CNN Model

128 x313x 1 128 x313x 1

Convolutional Neural Network Convolutional Neural Network

Flatten 2x7x16 Flatten 8x31x128
l 224 (1D) ! 31,744 (1D)
| [
| 2 | 2

Dimensions: width x length x channels Dimensions: width x length x channels

Figure 3: Baseline Architectures (Small and Large CNN Models)

localized representations of the different parts of the spectrogram. The convolutional design of this
part was the same as the Large CNN model. Since audio is sequential in nature, the output of the
CNN is flattened except for the temporal axis and is then passed to LSTM and attention layers.
The LSTM model (equations in Appendix [A] as displayed in Figure [6), combines the input with
a representation of past steps to analyze and make predictions on the next time step. Our LSTM
model was bidirectional and its hidden state was 256 dimensions. The multi-head self-attention
layer ’attends’ to the most relevant parts of the input by using the combination of multiple "heads"
to pay attention to different aspects multiplied by a weight (W), which is displayed in equation 2|
In our case, we used four heads. Each head uses a query-key-value system as shown in equation |3}
to generate attention. EquationEl describes that the query (Q), key (K), and value (V') values are
generated by trainable weights multiplied with the outputs of the LSTM (denoted as X)), and dj, is the
dimension of the key. With our method, the CRNN + attention model captures the spatial elements of
our visual data along with the sequential nature of audio.

To see if the addition of the multi-head attention layer contributed to the performance of the model, we
also trained a CNN followed by an LSTM without attention (CRNN) using the same hyperparameters
described above. An overview of the architectures can be found in Figure [d] We used the cross
entropy loss (equation to train our modelsﬂ Detailed tables representing the CRNN and CRNN
+ Attention architectures with dimensional information are referenced in the appendix section[Clas

Figure[12]and Figure [13]

M
L=- Z Yo,c log(po,c) (1)
c=1
MultiHead(Q, K, V) = concat(heady , heads, ..., head,)Wo 2)
head; = Attention(Q;, K;, Vi) = soft (Q"KiT)V 3)
eat; = ention iy V4, Vi) = soJtmax i
vy,
Qi=WPX, K =Wfx, Vi=w)'Xx “)

'We intentionally used a softmax layer and a multi-class cross-entropy loss instead of their binary equivalents
due to our early experiments that had 3 classes

CRNN Model CRNN with Attention Model

[])

‘ 128x313x1 ‘ 128x313x1

Convolutional Neural Network
Convolutional Neural Network

Reshape ‘ 8x31x128
Reshape 8x31x128 31x512 (2D)
31x512 (2D)

Long Short-Term Memory + Tanh
Long Short-Term Memory + Tanh

v 31x512

[] Multi-head Self-Attention (Query, Key, Value)

L 31x512

512 (1D) [}

[' | e

Dimensions: width x length x channels Dimensions: width x length x channels

Figure 4: Our CRNN and CRNN + Attention Model Architectures

We implemented our models in Pytorch & Torch Audio (13). To do audio augmentations, we used
Torch-audiomentations which was implemented on top of Torch Audioﬂ For hyperparameter tuning,
we experimented with learning rate, weight decay, and dropout, which are further detailed in the
Experimentation section. We also tuned the epochs (20, 50, 100), batch size (16, 256), loss function
(Cross Entropy, NLL loss), and added L2 regularization.

6 Experiments/Results/Discussion

Due to the problem being on classification, we will be using AUC, which is used in most of the
literature, as our main evaluation metric. This was chosen to allow using the same code on training 2
or 3 class models, despite accuracy not being a good metric in imbalanced dataset. We at first trained
our models using a Ir = le — 3,51 = 0.9, B2 = 0.99, which are the default values of the Adam
optimizer in PyTorch. Using the original dataset, which had highly unbalanced labels, all models had
the problem of classifying almost all samples as healthy. We initially assumed that this was due to
the dataset and attempted to counteract the imbalance with the following:

1. Weighting the loss by the proportion of samples in the dataset by 2(17") where p; is the

= (1-p;)°
proportion of samples for each class.
. Merging the "symptomatic" and "covid" classes in order to simplify the problem
. Segmenting the cough samples to not contain silent sections.
. Adding random audio augmentations to artificially increase the size of the training set

. Oversampling / Undersampling the dataset

AN L AW

. Changing the hyperparameters for creating the Mel spectrogram (n_{ft, hop length, etc.)

In almost all of our experiments and across all splits (train, validation, and test), the results were nearly
identical to what is shown in Figure[5] with the only exception being the balanced dataset. For that
set of data, we noticed that our models were classifying all classes randomly and that the loss was not
changing across epochs. After significant investigation and testing different sets of hyperparameters
and methodologies, in the end, we found out that the problem was due to an inappropriately set
learning rate.

For the remainder of our experiments, we decided to use the balanced training dataset. For each
model, we experimented with learning rates from le — 2 and 1e — 5, applying 0.2, 0.1, or no dropout,

“https://github.com/asteroid-team/torch-audiomentations

https://github.com/asteroid-team/torch-audiomentations

True label

coviD-19

healthy symptomatic coviD-19

Predicted label

Figure 5: Confusion Matrix that appeared on early experiments

and applying le — 5 weight decay. After this, we reported the results from the experiments with the
best set of values, as shown in Tablem We excluded dropout for the CRNN and CRNN + Attention
because the loss was not decreasing when included and was terminated early.

Model Learning rate weight decay dropout epochs dev AUC test AUC
CNN 9) - - - - - 0.85
CRNN (9) - - - - - 0.88
CRNN + Attention (9) - - - - - 0.91
Ensemble with CNN (3) - - - - - 0.77

Ours

Small CNN (baseline) le—4 le—5 0.2 38 0.51 0.53
Large CNN (baseline) le —4 le—5 0.2 49 0.54 0.53
CRNN le—4 le—5 - 32 0.88 0.80
CRNN + Self-Attention le—4 le—5 - 39 0.88 0.80

Table 1: Experiment Results

From our experiments, we concluded that the CRNN and CRNN + Attention were the best-performing
models, with their final test AUC scores being very similar. We believe this is due to the fact that
the CRNNSs are capturing the temporal aspect of the spectrogram: the "frequency" axis of the Mel-
spectrogram is collapsed across all channels as the "time" axis is kept constant. The results are passed
to the LSTM, which considers the temporal order of the stream of data. We concluded that the CNN’s
ability to extract spatial and spectral features from Mel-spectrogram images may not be enough for
accurate cough classification. This is further corroborated by the fact that we found regularization to
not reduce our large CNN’s overfitting—Figure[7]shows the loss & accuracy curves and additional
analysis.

Both our CNN and CRNN performed worse than the models in (9). Hamdi et al. did spend more
time (3 and 8 hours, respectively) training their models, whereas we employed tactics such as early
stopping when our loss curves plateaued. We suspect that the differences in the data processing step,
the way we augment the data, and other hyperparameters, such as dropout, may explain the difference
between the model results.

7 Conclusion/Future Work

In conclusion, the CRNN and CRNN + Attention were our best-performing models; however, they
performed equally well, so it seems like the Attention didn’t improve the model classification. During
this process, we ran into many errors with data processing and model training; thus, we implemented
many troubleshooting methods, including weighting loss, more hyperparameter tuning and grid
search, dataset preparation, and more. For the future, we’d like to implement include contrastive
learning approaches, such as SIimCLR for audio (14).

8 Contributions

Nick:

* Code: Training loop, baseline model experiments, hyperparameter tuning, CNN implemen-
tation, final code clean up

* Report: Literature review, baseline, methods, experiments & results, final presentation
slides

Serena:

* Code: Training loop, data augmentation, data processing, final code clean up, baseline
model experiments, CNN implementation, hyperparameter tuning

* Report: Datasets & features, methods, experiments & results, final presentation slides

Chris:

e Code: CNN implementation, development and implementation of CRNN & CRNN +
Attention models, baseline model experiments, hyperparameter tuning

* Report: Literature review, methods, results, model figures, section revisions

* Note: Chris was sick for several weeks of the quarter.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

G. Deshpande and B. W. Schuller, “Audio, speech, language, & signal processing for covid-19:
A comprehensive overview,” arXiv preprint arXiv:2011.14445, 2020.

L. Orlandic, T. Teijeiro, and D. Atienza, “The coughvid crowdsourcing dataset, a corpus for the
study of large-scale cough analysis algorithms,” Scientific Data, vol. §, no. 1, pp. 1-10, 2021.

G. Chaudhari, X. Jiang, A. Fakhry, A. Han, J. Xiao, S. Shen, and A. Khanzada, “Virufy: Global
applicability of crowdsourced and clinical datasets for ai detection of covid-19 from cough,”
arXiv preprint arXiv:2011.13320, 2020.

C. Brown, J. Chauhan, A. Grammenos, J. Han, A. Hasthanasombat, D. Spathis, T. Xia, P. Cicuta,
and C. Mascolo, “Exploring automatic diagnosis of covid-19 from crowdsourced respiratory
sound data,” arXiv preprint arXiv:2006.05919, 2020.

N. Sharma, P. Krishnan, R. Kumar, S. Ramoji, S. R. Chetupalli, P. K. Ghosh, S. Ganapathy,
et al., “Coswara—a database of breathing, cough, and voice sounds for covid-19 diagnosis,”
arXiv preprint arXiv:2005.10548, 2020.

N. K. Chowdhury, M. A. Kabir, M. M. Rahman, and S. M. S. Islam, “Machine learning for
detecting covid-19 from cough sounds: An ensemble-based mcdm method,” Computers in
Biology and Medicine, vol. 145, p. 105405, 2022.

M. Esposito, S. Rao, V. Narayanaswamy, and A. Spanias, “Covid-19 detection using audio
spectral features and machine learning,” in 2021 55th Asilomar Conference on Signals, Systems,
and Computers, pp. 1146-1150, IEEE, 2021.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

S. Hamdi, M. Oussalah, A. Moussaoui, and M. Saidi, “Attention-based hybrid cnn-Istm and
spectral data augmentation for covid-19 diagnosis from cough sound,” Journal of Intelligent
Information Systems, pp. 1-23, 2022.

S. R. Chetupalli, P. Krishnan, N. Sharma, A. Muguli, R. Kumar, V. Nanda, L. M. Pinto,
P. K. Ghosh, and S. Ganapathy, “Multi-modal point-of-care diagnostics for covid-19 based on
acoustics and symptoms,” arXiv preprint arXiv:2106.00639, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems,
vol. 30, 2017.

[12] Q. Zhou, J. Shan, W. Ding, C. Wang, S. Yuan, F. Sun, H. Li, and B. Fang, “Cough recognition
based on mel-spectrogram and convolutional neural network,” Frontiers in Robotics and Al,
p- 112, 2021.

[13] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural Information Processing Systems
32, pp. 8024-8035, Curran Associates, Inc., 2019.

[14] D. Jiang, W. Li, M. Cao, W. Zou, and X. Li, “Speech simclr: Combining contrastive and
reconstruction objective for self-supervised speech representation learning,” arXiv preprint
arXiv:2010.13991, 2020.

Appendices

A Model equations

fir = 0'g{Wf$f_ + Ufhg—l + bf}

it = 0y(Wixy +Ushy 1 + b;)

o = 0y(Wozy + Uy 1+ b,)

¢t = froci 1 +ip oo (Wexy + Ushy 1 + b)
hy = o0; oo ()

Figure 6: LSTM equations

B Curves

C Detailed model architectures

Figure 7: Loss and Accuracy Curves for Our Large CNN Model during Preliminary Testing. The
graphs on the right are indicative that our regularization attempts (adding dropout and weight decay)
appear to work. However, even with proper regularization, the model fails to stop overfitting (and
testing our model on our test set confirms this). This result helps confirm that a model performs
significantly worse if it cannot analyze the temporal aspect of cough audio data for COVID-19

Loss

Without Regularization

With Regularization

0.045

0.040

0035

0030

0.025
— aining Loss

Validation Loss

0.045

0040

Loss

0035

0.030
= Taining Loss
Validation Loss

0o 2 a4 6

0 5 10 15

08

Accuracies

0s

—— Taining Accuracies
Validation Accuracies

25 30 s

—— Taining Accuracies
Validation Accuracies

Accuracies

Epoch

8 0 5 15
Epoch

25 30 35

classification.
Sizes are not drawn to scale
Conv1 Conv2 Conv3 Convd
Ao o A Ao
5 RS a0 0o
5x5x8 2x2x8 3x3x12 2x2x12 3x3x12 2x2x12 3x3x16 2x2x16
Stride = 2 Stride = 2 Stride = 1 Stride = 2 Stride = 1 Stride = 2 Stride = 1 Stride = 2

(l/: Convelution Kemnel (No Padding) | RelLU Activation

@ Max Pooling (2D)

| Batch Normalization (2D)

Figure 8: Detailed Visual Displaying Convolutional Layers of Small CNN

Sizes are not drawn to scale

Conv1 Conv2 Conv3
A A A
" a0 O
CTPlep | | | = ‘ \:|/‘ —)
3x3x16 2x2x16 3x3x32 2x2x32 3x3x64 2x2x64
Stride =2 Stride = 2 Siride = 2 Stride = 1 Stride = 1 Stride = 1
Convd
L
r hl
— P P
3x3x128 2x2x128
Stride = 1 Stride = 1

|/ u Convolution Kernel (No Padding)

@ Max Pooling (2D)

| ReLU Activation

| Batch Normalization (2D)

Figure 9: Detailed Visual Displaying Convolutional Layers of Large CNN

3

Layer (type:depth-idx) Output Shape Param #
CNN [256, 2] -
I—Sequential: 1-1 [256, 8, 31, 77] —
LConv2d: 2-1 [256, 8, 62, 155] 208
LReLU: 2-2 [256, 8, 62, 155] -
L MaxPool2d: 2-3 [256, 8, 31, 77] -
LBatchNorm2d: 2-4 [256, 8, 31, 771 16
L Dropout: 2-5 [256, 8, 31, 771 —
—Sequential: 1-2 [256, 12, 14, 37] -
Lconv2d: 2-6 [256, 12, 29, 75] 876
LReLU: 2-7 [256, 12, 29, 75] —
L MaxPool2d: 2-8 [256, 12, 14, 37] -
L-BatchNorm2d: 2-9 [256, 12, 14, 37] 24
L Dropout: 2-10 [256, 12, 14, 37] —
-Sequential: 1-3 [256, 12, 6, 17] -
L-Conv2d: 2-11 [256, 12, 12, 35] 1,308
LReLU: 2-12 [256, 12, 12, 35] -
L MaxPool2d: 2-13 [256, 12, 6, 17] -
L BatchNorm2d: 2-14 [256, 12, 6, 17] 24
LDropout: 2-15 [256, 12, 6, 171 -
Sequential: 1-4 [256, 16, 2, 7] —
LConv2d: 2-16 [256, 16, 4, 15] 1,744
LReLU: 2-17 [256, 16, 4, 15] —
L MaxPool2d: 2-18 [256, 16, 2, 71 —
LBatchNorm2d: 2-19 [256, 16, 2, 71 32
LDropout: 2-20 [256, 16, 2, 7] -
I-Flatten: 1-5 [256, 224] —
l—Linear: 1-6 [256, 2] 450
I—Softmax: 1-7 [256, 2] —
Total params: 4,682
Trainable params: 4,682
Non—-trainable params: @
Total mult-adds (G): 1.17
Figure 10: CNN small model

10

Layer (type:depth-idx) Output Shape Param #
CNNNetwork [256, 2] -
Sequential: 1-1 [256, 16, 31, 78] -

Lconv2d: 2-1 [256, 16, 63, 1561 160

L ReLU: 2-2 [256, 16, 63, 1561 —

L MaxPool2d: 2-3 [256, 16, 31, 78] —

L BatchNorm2d: 2-4 [256, 16, 31, 78] 32

LDropout: 2-5 [256, 16, 31, 78] -
—Sequential: 1-2 [256, 32, 14, 37] -

Lconv2d: 2-6 [256, 32, 15, 38] 4,640

LReLU: 2-7 [256, 32, 15, 38] -

L MaxPool2d: 2-8 [256, 32, 14, 37] -

L BatchNorm2d: 2-9 [256, 32, 14, 37] 64

L Dropout: 2-10 [256, 32, 14, 37] -
—Sequential: 1-3 [256, 64, 11, 34] —

Lconv2d: 2-11 [256, 64, 12, 35] 18,496

LReLU: 2-12 [256, 64, 12, 35] —

L MaxPool2d: 2-13 [256, 64, 11, 34] -

L BatchNorm2d: 2-14 [256, 64, 11, 34] 128

L Dropout: 2-15 [256, 64, 11, 34] -
Sequential: 1-4 [256, 128, 8, 31] -

Lconv2d: 2-16 [256, 128, 9, 321 73,856

LReLU: 2-17 [256, 128, 9, 32] —

L MaxPool2d: 2-18 [256, 128, 8, 31] —

LBatchNorm2d: 2-19 [256, 128, 8, 31] 256

LDropout: 2-20 [256, 128, 8, 31] -
—Flatten: 1-5 [256, 31744] -
I—Linear: 1-6 [256, 21 63,490
—Softmax: 1-7 [256, 2] -

Total params: 161,122

Trainable params: 161,122

Non-trainable params: @

Total mult-adds (G): 8.53

11

Figure 11: CNN large model

Layer (type:depth-idx) Output Shape Param #

CRNN [256, 21 -
I—-Sequential: 1-1 [256, 16, 31, 78] -
LConv2d: 2-1 [256, 16, 63, 156] 160
LReLU: 2-2 [256, 16, 63, 156] -
L MaxPool2d: 2-3 [256, 16, 31, 78] -
LBatchNorm2d: 2-4 [256, 16, 31, 78] 32
LDropout: 2-5 [256, 16, 31, 78] -
—Sequential: 1-2 [256, 32, 14, 37] -
LConv2d: 2-6 [256, 32, 15, 38] 4,640
LReLU: 2-7 [256, 32, 15, 38] -
L MaxPool2d: 2-8 [256, 32, 14, 37] -
LBatchNorm2d: 2-9 [256, 32, 14, 37] 64
LDropout: 2-10 [256, 32, 14, 37] -
—Sequential: 1-3 [256, 64, 11, 34] -
LConv2d: 2-11 [256, 64, 12, 35] 18,496
LRelLU: 2-12 [256, 64, 12, 35] -
L MaxPool2d: 2-13 [256, 64, 11, 34] -
LBatchNorm2d: 2-14 [256, 64, 11, 34] 128
LDropout: 2-15 [256, 64, 11, 34] -
—Sequential: 1-4 [256, 128, 8, 31] -
LConv2d: 2-16 [256, 128, 9, 321 73,856
LRelLU: 2-17 [256, 128, 9, 32] -
L MaxPool2d: 2-18 [256, 128, 8, 31] -
L BatchNorm2d: 2-19 [256, 128, 8, 31] 256
L Dropout: 2-20 [256, 128, 8, 31] -
LSTM: 1-5 [256, 31, 5121 2,625,536
I—Tanh: 1-6 [256, 31, 512] -
—Sequential: 1-7 [256, 512, 1] -
LLinear: 2-21 [256, 512, 1] 32
LReLU: 2-22 [256, 512, 11 -
—Flatten: 1-8 [256, 512] -
I—Linear: 1-9 [256, 2] 1,026
—Softmax: 1-10 [256, 2] -

Total params: 2,724,226
Trainable params: 2,724,226
Non-trainable params: @
Total mult-adds (G): 29.35

Figure 12: CRNN model

12

Layer (type:depth-idx) Output Shape Param #

CRNN_with_Attention [256, 2] -
—Sequential: 1-1 [256, 16, 31, 78] -

LConv2d: 2-1 [256, 16, 63, 1561 160

LReLU: 2-2 [256, 16, 63, 1561 -

L MaxPool2d: 2-3 [256, 16, 31, 78] —

L BatchNorm2d: 2-4 [256, 16, 31, 78] 32

L Dropout: 2-5 [256, 16, 31, 78] —
—Sequential: 1-2 [256, 32, 14, 37] —

LConv2d: 2-6 [256, 32, 15, 38] 4,640

LReLU: 2-7 [256, 32, 15, 38] -

L MaxPool2d: 2-8 [256, 32, 14, 37] -

L BatchNorm2d: 2-9 [256, 32, 14, 37] 64

L Dropout: 2-10 [256, 32, 14, 37] -
—Sequential: 1-3 [256, 64, 11, 34] —

Lconv2d: 2-11 [256, 64, 12, 35] 18,496

LReLU: 2-12 [256, 64, 12, 35] -

L MaxPool2d: 2-13 [256, 64, 11, 34] —

L BatchNorm2d: 2-14 [256, 64, 11, 34] 128

L Dropout: 2-15 [256, 64, 11, 34] -
Sequential: 1-4 [256, 128, 8, 31] -

Lconv2d: 2-16 [256, 128, 9, 321 73,856

LReLU: 2-17 [256, 128, 9, 32] —

L MaxPool2d: 2-18 [256, 128, 8, 31] —

L BatchNorm2d: 2-19 [256, 128, 8, 31] 256

LDropout: 2-20 [256, 128, 8, 31] —
—LSTM: 1-5 [256, 31, 5121 2,625,536
Tanh: 1-6 [256, 31, 512] -
ILinear: 1-7 [256, 31, 512] 262,656
I—Linear: 1-8 [256, 31, 512] 262,656
I—Linear: 1-9 [256, 31, 512] 262,656
FMultiheadAttention: 1-10 [256, 31, 512] 1,050,624
—Sequential: 1-11 [256, 512, 1] —

LLinear: 2-21 [256, 512, 1] 32

LReLU: 2-22 [256, 512, 11 -
—Flatten: 1-12 [256, 512] -
ILinear: 1-13 [256, 21 1,026
—Softmax: 1-14 [256, 2] -

Total params: 4,562,818
Trainable params: 4,562,818
Non-trainable params: @
Total mult-adds (G): 29.55

Figure 13: CRNN + Attention model

13

	Introduction
	Related work
	Dataset and Features
	 Baseline
	 Methods
	Experiments/Results/Discussion
	Conclusion/Future Work
	Contributions
	Appendices
	Model equations
	Curves
	Detailed model architectures

