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Abstract

The use of synthetic clinical data, which has similar or identical statistical properties
to real patient data, but is not sourced from real patients, is promising for enhancing
clinical research and protecting patient privacy. We train a convolutional variational
autoencoder on a dataset of 12-lead Electrocardiograms (ECGs) and demonstrate
that samples generated by the model lack a global coherent structure–for example,
the samples are not periodic, and are therefore inadmissible. We propose to
modify the VAE architecture by using the decoder to predict a filter, which is then
convolved with an impulse train to produce the output signal. This novel procedure
guarantees that the signals sampled from the model are periodic.

1 Introduction

Among the most significant impediments to the application of machine learning
in clinical settings are a lack of sufficient labeled training data and the desire to
protect patient privacy. Generation of synthetic clinical data, which has similar
or identical statistical properties to real patient data, but is not sourced from
real patients, is promising for addressing both issues of scale and privacy–and
by extension for enhancing clinical research. In this project, we implement a
Variational Autoencoder (VAE)–a deep generative model–for use in generating
synthetic clinical electrocardiograms (ECGs) to augment a small medical dataset.
Such generated data could then be used in a down-stream classification task, such
as detecting various cardiovascular conditions. The primary challenge is generating
samples that adhere to certain structural properties such as the QRS complex and
periodicity. As we will show, using a straightforward VAE does not produce
samples with the requisite clinical structure. We therefore complement VAEs with
classical signal processing techniques to produce periodic ECG samples.

2 Related Work

Hong et al. (2020) conducted a systematic review of the literature on deep learning
methods for electrocardiogram data [5]. Common application tasks include ECG
segmentation, disease detection, sleep staging, biometric human identification,
denoising, and more.

The most notable results in applying deep learning methods to generate synthetic
ECGs were achieved by Delaney et al. (2019) [1], Golany and Radinsky (2019)
[3], and Zhu et al. (2019) [10]. All used different variants of generative adversarial
networks (GANs), with the best results coming from Delaney et al. (2019) with
Maximum Mean Discrepancy (MMD) metric of 1.05 × 10-3.

CS230: Deep Learning, Fall 2022, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



A more recent paper by Kuznetsov, VI V et al implements a simple VAE to
generate ECGs corresponding to a single cardiac cycle [7]. The paper’s primary
drawback is the lack of complete ECG signal generation, and as such an absence of
methodologies to address the challenge of synthetically producing global coherent
structure.

3 An Overview of ECG and the Dataset

An electrocardiogram (ECG) is a diagnostic measure of the electrical activity of
the heart, collected using electrodes placed on the body. It is one of the most
important tools used by cardiologists to assess the function of the heart and
detect potential pathologies. Tracings include different phases of a cardiac cycle,
including the P, T, and U waves, as well as the QRS complex, which consists of
the Q, R, and S peaks. The size, shape, and location of these components provide
valuable information about the heart’s function and the presence of certain diseases.

We use the dataset introduced in the ECG research paper by Zheng, J., Chu,
H., Struppa, D. et al [9]. The dataset consists of 10,046 10-second 12-lead ECGs
sampled at 500Hz. Each ECG is labeled with one of 12 rhythms (e.g. Sinus Rhythm,
Atrial Fibrillation), and a subset of the 56 different conditions (e.g. myocardial
infarction, U wave), along with the patient age and gender, and eleven other ECG
characteristics. Our generative model is trained on and produces single-lead ECGs.

Figure 1: ECG sample from a 66 year old Female patient with Sinus Tachycardia

4 Convolutional Variational Autoencoder

In this section, we describe the VAE architecture used as the baseline model for
our generative task (see Figure 2), which is the same model described in [6],
whose paper was incredibly informative in understanding this architecture and its
application to the setting of ECGs.
The model consists of two components: a probabilistic encoder, qθ(z | x), which
receives the raw signal x as input and predicts a latent vector z, and a probabilistic
decoder, pϕ(x′ | z), which takes z and produces a signal x′. The encoder and
decoder are trained jointly to minimize the following loss:

l(θ, ϕ) =

N∑
i=1

−Ez∼qθ(z|xi) [log pϕ(x
′
i | z)] +DKL(qθ(z | xi) || N (0, I))

The first term is the reconstruction loss, and the second is a KL divergence term
which encourages the marginal distribution of the latent vector produced by the
encoder to be a standard multivariate Gaussian. We minimize the KL divergence in
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Figure 2: Top: a typical example from the dataset (single lead.) Middle: a sample from the VAE
baseline, demonstrating missing periods. Bottom: a sample from our modified VAE architecture,
generated using an impulse train extracted from the example in the top row. The sample from the
modified VAE captures the periodic structure of the original.

the usual way by instead maximizing the Evidence Lower-Bound (ELBO) [2].

Encoder: The encoder is a neural network consisting of 10 residual blocks, fol-
lowed by two separate linear layers, one for each parameter of qθ(z | x) (the mean
and variance.) Each block is composed of two convolutional layers, with each layer
applying batch normalization and ReLU before a one-dimensional convolution
with a kernel width of either 19 or 9. We employ skip connections in each residual
block of the encoder by adding a copy of the input to the output of the convolutional
layers. In some blocks, we downsample the signal by convolving with a 1 × 1
kernel with a horizontal stride of 2. Please see figure 5 for details.
The output is then flattened and passes through two (separate) linear layers
to predict the mean and log-variance of the latent distribution qθ(z | x). The
"Re-parameterization Trick" is then used to sample a latent vector z. That is, we
sample ϵ ∼ N (0, I) and let zi = µi + σiϵi. This enables gradients to flow through
the latent distribution and to optimize the parameters of qθ(z | x).

Decoder: The decoder is a neural network with 10 residual blocks, designed to be
symmetric to the encoder. Each block is composed of two convolutional layers,
with each layer applying batch normalization and ReLU before a one-dimensional
transpose convolution with a kernel width of either 19 or 9. Here, we do not
employ skip connections, and upsample the input instead of downsampling it.

Training: The network was trained to minimize the sum of the reconstruction error
(mean-squared error) and the KL divergence term. Details on hyperparameters can
be found in Figure 5.
Training the network, especially on the full dataset, was very difficult. We
encountered two major problems when scaling up the VAE to the full dataset, both
of which are well documented the literature: (1). the KL term diverges after a
number of epochs, and (2). the KL term drops to zero after a number of epochs
("KL Vanishing"). We used both the annealing schedule described in [8], and also
the cyclical annealing schedule described in [4], but after many attempts, were
unsuccessful in achieving training stability on the full dataset. In order to proceed
under limited time constraints, we opted to train the model on a small subset of the
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Figure 3: Our proposed VAE architecture for generating periodic signals.

training examples, truncated to 2048 time-steps per lead.

Alternative architectures: In addition to the convolutional VAE, we also imple-
mented an LSTM-based sequence to sequence autoencoder trained with teacher
forcing, but did not find this architecture to be succesful in modeling the data.

5 Modifying The Architecture to Generate Periodic Signals
In order to generate admissible synthetic data which is usable in a downstream
task, it is crucial for the samples of the generative model to mimic the highly
structured nature of ECG data. We have demonstrated that naively sampling from
a VAE trained on this data can result in samples which are missing periods. To
solve the issue of non-periodic samples, we propose an alternative architecture
which forces the generated samples to be periodic.

Modified Architecture: Our proposed architecture (see Figure 3) differs from
the standard VAE in two ways: (1). the input signals are processed to extract an
impulse train from each signal, which captures its periodic structure, and (2). the
decoder outputs a filter. To compute the final output, we convolve each impulse
train with the corresponding filter, which produces a signal with the same periodic
structure as the input.

Extracting the impulse trains: We apply a sequence of straightforward transfor-
mations to each input signal to produce a corresponding impulse train:

1. The signal is standardized by normalizing by twice its standard deviation.
2. The signal is raised to the power of four, which squashes the secondary local

extrema while preserving the primary peak in each period. This also makes
the signal non-negative, which is useful for ECGs with negative R-peaks.

3. A Hamming filter is applied to smooth the signal.
4. The function log(1 + x) is applied to the signal, which serves to restore the

relative amplitudes of the peaks in the signal.
In our first attempt, we constructed impulse trains with a fixed period by estimating
the period of each input signal as the second peak of its autocorrelation. However,
we found that using an impulse train with a fixed period leads to poor results, since
the period of the input signals is not fixed: the peaks of the reconstructed signal
being even slightly off from the original signal would cause the reconstruction to
incur a large MSE, even if the two signals look identical.
We attempted to use a number of peak-finding algorithms described in the literature,
but did not find that these algorithms worked reliably on our dataset.
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Figure 4: Example ECG signal and its corresponding impulse train.

We settled on the approach described above as it produces an impulse train which
is sufficiently usable and whose peaks match the input exactly.

6 Conclusion/Future Work

Synthetic ECG generation presents a promising avenue towards the application
of machine learning in clinical cardiology settings, especially given the ability
to generate samples with global coherent structure. Pertinent future work on the
basis of this project would include conditional generation of samples with certain
pathologies, extrapolation of the model to include all 12 ECG leads.

7 Contributions

Both members jointly contributed to a literature review, dataset construction, model
implementation and testing, and writing of the report.

8 Code

Code is available at: https://github.com/yonatano/ecg_project.
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9 Appendix

Figure 5: Detailed view of the modified VAE architecture.
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