
Performance Prediction in Chess using Sequence
Models

Stanley Cao
Stanford University

stanley.l.cao@stanford.edu

Arthur Lee
Stanford University

arthurlh@stanford.edu

Abstract—We explore the novel problem of using language
models to predict chess ratings from the quality of play. Specific
models explored in this paper include RNNs, LSTMs, GRUs,
and the transformer architecture. While most of the recurrent
architectures perform similarly, we find that the GRU and
the transformer model achieve the best performance of the
aforementioned models according to the L1 loss metric. However,
all of our models, still obtain very high loss (≈ 200 rating
points of error per prediction), indicating that the problem of
performance prediction is an inherently challenging problem.

I. INTRODUCTION

In competitive chess, Elo ratings are used to determine the
relative strength of players. Proposed by Arpad Elo (1) and
formally adopted in the 1970’s by the World Chess Federation
(FIDE), Elo ratings provide a precise ordinal ranking of the
player strength of every player within a “rating pool”. The
mechanics are as follows: all players have some uniform initial
rating. After each game, the winner of a game steals points
from the loser in proportion to the difference in their respective
ratings. If a higher-rated player beats a lower-rated player, a
“small” number of points are taken away from the lower-rated
player. If a lower-rated player beats a higher-rated player, a
“large” number of points are taken from the higher-rated player
(in the event of a draw, the lower-rated player gains some
points from the higher-rated player).

Formally, the Elo rating model assumes that for a player
A with rating RA and B with rating RB , we have that the
Expected score (where 0 is a loss, 0.5 is a draw, and 1 is a
win) of player A is

EA =
1

1 + 10(RB−RA)/400

and the expected score of B is EB = 1
1+10(RA−RB)/400 . Let

SA, SB be the actual scores of players A, B in a game. Then
we update their Elo ratings with the rules R′

A = RA +KA ·
(SA −EA) and R′

B = RB +KB · (SB −EB). KA,KB are a
constant determined by the organization that administers the
rating; for the World Chess Federation, they use K = 40 for
players new to the rating list, K = 20 for players rated below
2400, and K = 40 for players above 2400.

Outside of chess, Elo ratings have been used for competitive
rankings in other games such as Go, Backgammon and Scrab-
ble. They have also been used to evaluate the performance of
Machine learning models, for example in the case of multi-
agent Reinforcement Learning (2).

Elo ratings are a relative metric and tell us little about
the absolute performance of players in chess. For example,
in a rating pool comprised entirely of very weak players,
an intermediate player could have an arbitrarily high rating.
However, a mapping between Elo ratings and “absolute”
playing strength defined by some objective measure could be
useful in a number of domains. The following is a sketch of
potential use cases:

• Historical comparison of players from different eras.
Elo ratings do not allow for direct comparison of the
playing strength of players from different time periods,
who did not face each other and had totally different
sets of opponents. It is also thought that over time, Elo
ratings have experienced “inflation”: a player of constant
absolute strength is likely to be higher rated in 2022 than
in 1980. Much research has been done to unify ratings on
a single scale (3). These typically involve scoring players
on some new rating scale (e.g. correlation of moves with
chess engine moves). However, our approach allows us
to translate the absolute strength of a historical player
to today’s rating scale, which not only allows ordinal
comparison of playing strength but aids interpretability.

• Player self-evaluation. Beginners, who do not possess
a FIDE or US Chess Federation (USCF) rating, may
be interested to know their possible rating were they
to acquire one. Using their rating from online sites like
chess.com may be unsatisfactory, since folk wisdom typ-
ically holds that ratings on chess.com are typically 200-
300 points higher than the corresponding FIDE rating.1

Intuitively, this is because chess.com may have a higher
pool of “weak” players that players can acquire points
from. Moreover, ratings may take a while to “stabilize”,
whereas a sophisticated machine learning algorithm could
quickly provide a granular estimate of playing strength.

• Cheating detection. Cheating detection has recently
acquired new significance in professional chess due to
high-profile accusations made against American chess
grandmaster Hans Niemann by reigning world cham-
pion Magnus Carlsen.2 Having a system that provides
a predicted Elo rating could potentially identify isolated

1See, for example: https://www.chess.com/forum/view/general/how-does-
chesscom-ratings-compare-with-fide-ratings?page=2

2https://www.nytimes.com/2022/09/13/crosswords/hans-niemann-magnus-
carlsen-cheating-accusation.html

chess.com
chess.com
chess.com


instances of cheating (e.g. where a player’s predicted
rating from a game or series of games is at odds with their
“actual” rating, meaning that they are “playing above
their strength”). While resolving the issue of whether Nie-
mann cheated in this specific game likely requires more
fine-grained analysis, a model that predicts performance-
based Elo ratings is likely useful for settings such that
online cheating detection (e.g. if a 1400-rated player plays
one game at a 2400 level, it is likely they are using an
engine).

• Calibration of format rules. Tournament organizers and
observers would be able to provide a quantitative answer
to questions such as “does reducing time control by X
minutes result in a deterioration in the quality of play?”
or “how much is a grandmaster handicapped if they are
made to play chess with a blindfold?”

II. RELATED WORK AND NOVELTY

Our work is directly related to past attempts to quantify
the “intrinsic” strength of players. These typically measure
the statistical similarity between an ensemble of engine moves
and a player’s moves (4) (5). Regan (6) defined two parameters
that measure the difference between a player’s choice of move
and the engine’s cardinal ranking of “good” moves. He showed
that these parameters had strong correlation with Elo ratings.
A more recent paper by Alliot (3) introduces a method that
involves computing stochastic transition matrices for each
player at each possible move, where entries (i, j) of the matrix
represent the probability that a player will transition from a
position with engine evaluation i to one with evaluation j.
The paper uses the stationary distribution of these transition
matrices to determine the win probability for each player in a
hypothetical head-to-head match. Our work is differentiated
in two keys ways: first, in empirical tests, most of these
studies focus only on ranking the world’s top players from
different periods, whereas we want to provide a comprehensive
classification scheme that applies to beginner and intermediate
level players. Second, these methods rely on closed-form
statistical measures and do not use deep learning. To our
knowledge, despite the natural interpretation of chess moves
as sequential data, this is the first attempt to use sequence
models to interpret the quality of play in a chess game.

Finally, our research builds on modern literature about the
use of machine learning in sequence modelling, in particular
many-to-one sequence models. We will use methods such as
Gated Recurrent Unit (GRU) models (7) and the transformer
architecture (8), incorporating recent optimizations and ad-
vancements such as sequence packing.

III. DATASET

We make use of the lichess.org game database. lichess.org
is a free and open source online chess playing platform. It
publishes a monthly public database of over 90 million games
(including moves and the lichess.org ratings of the players
involved) of which approximately 6% include information

about Stockfish analysis. These games are in PGN format (a
system of chess-specific notation).

Thus far, we have made use of a dataset comprising 200,000
games played in December 2019 that were scraped from PGN
format to CSV files by chess website web.chessdigits.com.
These games include engine evaluations. Table I shows the
main features of the games in our dataset. The target variable
(Lichess ratings) are centered around 1500 with SD of 322.3

Our data pre-processing approach was as follows:
• We used R to pre-process the data. First, we pivoted the

data such that each row corresponded to a unique pair
of (game index, move). For every move, we extracted
relevant features such as which piece was moved, the
engine evaluation, number of moves to checkmate (if
applicable), the amount of time remaining, etc. We also
encoded string data (e.g. whether a game was rapid, blitz
or bullet) as dummy variables. A sample of the post-
processed data from R is included in the github (labelled
“for pandas.csv” )

• Next, we removed all moves beyond 150 for all games
(we define one “move” as an action by a single player, in
contrast to conventional chess notation where a “move”
refers to a tuple of a white move followed by a black
move). For games with less than 150 moves, we pad
missing values with zeros. This is inspired by the ap-
proach taken in Natural Language Processing and other
sequence models.

• We then normalized columns with large values through
either min-max normalization or standardization. We nor-
malized the output vector (a pair of ratings [WhiteElo,
BlackElo] by dividing by 2000 (the vast majority of
ratings were between [800, 2000]).

Due to the high number of examples, we used a 90/10
training/test split for our models in all subsequent sections.
Unfortunately, at the time of writing all our models were only
trained on 50,000 data points (out of the 200,000 available
in our Dec 2019 database) due to computational limitations.
We ran out of RAM on both the EC2 instance and our
local devices, and also faced long training times (training on
50,000 data points already took 15 minutes per epoch). In the
future, a more efficient approach (e.g. use of sparse matrix
methods or just asking for more virtual RAM and vCPUs)
may improve our training and could generalize our method to
the full datset of 200,000, or even the total lichess.org database
which includes tens of millions of annotated games.

IV. BASELINE

We used a vanilla feedforward neural network with two
hidden layers as our baseline. We flattened each sequence
into a vector of length (sequence length) ∗ (num feature) =
150 ∗ 377 = 56550 and trained it on our dataset. We did not
expect this method to yield particularly accurate results, since
a flattened version of the game’s data does not preserve the

3The highest rating of 3110 likely belongs to Magnus Carlsen, who plays
under the pseudonym DrNykterstein

lichess.org
lichess.org
lichess.org
web.chessdigits.com
lichess.org


TABLE I: Summary Statistics for Data

Statistic N Mean Median St. Dev. Min Max Pctl(25) Pctl(75)
White Elo 200,000 1,511.802 1,500 322.308 800 3,091 1,275 1,732
Black Elo 200,000 1,512.332 1,500 322.455 800 3,110 1,276 1,732
Number of moves 200,000 63.101 59 26.048 5 200 45 75
Time Control (seconds) 200,000 385.786 300 371.226 3 10,800 180 600

sequential information of the game. Moreover, having such a
large number of features renders us vulnerable to the curse of
dimensionality, increasing overfitting.

We experimented with a range of hyperparameters, finding
best performance with a network of 128 neurons and learning
rate of 0.0001. An important question was the choice of
loss function and evaluation metric. Three approaches were
considered: first, a regression loss with mean-squared error
(MSE) where the outputs were a pair of numbers y ∈ R2

representing each player’s rating. Second, the same output
but with a L1 Loss function. Finally, a classification problem
where ratings are classified into rating “bins“ (e.g. 1500-1700
strength, 1700-1900 strength, etc) and cross-entropy loss is
used to train the model. Between L1 and L2 loss functions,
we ultimately opted L1 Loss for two reasons: first, MSE loss
had poor ability to learn the data, performing worse on a L1
(absolute deviation) loss basis than just outputting the average.
We speculate that this is because the MSE loss function was
overly sensitive to the presence of outlier examples, and this
dataset contains plenty of outliers (e.g. highly rated players
performing purely in blitz format games). Additionally, we
felt that minimizing L1 Loss provided a more interpretable
output (the mean rating deviation).

We chose regression over classification as the default ap-
proach because we were having issues with the convergence
of our classification model. Additionally, regression has a more
“natural” interpretation since it better captures the ordinal
nature of the problem (i.e. the algorithm should be penalized
less severely for classifying a 1500 player as 1800 rather than
as 2700, however a classification approach with bin width
of 200 would penalize both equally). Nevertheless, we still
consider the classification approach as a possible optimization
and briefly discuss our results.

The baseline model performs relatively well, with L1 Loss
of about 210 Elo Points (Table II. This means that despite the
problems we highlighted above, it is able to learn nontrivial
features of the data. We stopped training after the test loss
began increasing, since we noticed the model overfit relatively
early in the training process (Figure 2).

V. METHODS AND MODELS

We considered various sequence model architectures
and optimizations, discussed below. For RNN-based ap-
proaches, we tried using both the ReLU and tanh activa-
tion functions. We also tried various values in the range
{32, 64, 128, 512} for batch size and values in the range
{0.1, 0.05, 0.01, 0.005, 0.001} for the learning rate. We also
experimented with sequence lengths of 50, 75, 100, 125 and

150, but found that 150 yielded the best results (200 would
be too large as 99 percent of games ended before move 150).
Our general approach for hyperparameter selection was to run
the model with altered hyperparameters on a base RNN model
first, and with a smaller amount of data (5000 examples).

We implement a number of sequence models: first, a
standard RNN model with no memory cells. We then study
whether LSTM and GRUs can improve on RNNs to encode
long-term dependencies in the data. Next, we study addi-
tional optimizations: a multi-head architecture, encoder-only
transformer network, and other types of optimizations (cross-
entropy loss and packing).

A. RNN Model

We implement a vanilla many-to-one RNN model with 3
hidden layers and 256 hidden units. We experimented with
values of {128, 256, 512} and 2 hidden layers, but there were
no significant impacts on performance. The final output of the
RNN is fed into a dense layer with 256 neurons with RELU
activation followed by a final dense layer with a 2-dimensional
output. Since our model overfit quickly, we chose to apply
a dropout of 0.2 (we also tried no dropout, and 0.5). We
initially had problems with our model predicting the sample
average outcome, independent of the input features. This was
solved through a mixture of feature normalization and random
initialization of RNN hidden units (rather than the default
initialization, which is zeros). We also enacted early stopping
to mitigate the overfitting that we observed in the baseline
model. The RNN model performed poorly, with a L1 loss of
229 Elo points on the test set, about 10 % worse than the
baseline.

B. LSTM and GRUs

We suspect that one reason why the RNN model has
substandard performance is due to its inability to “remem-
ber” long-range dependencies, particularly in long padded
sequences. LSTM and GRU models may address this issue.
LSTMs incorporate four gates: update gates, relevance gates,
output gates, and forget gates. Update gates control how much
to update the current cell state; relevance gates control how
much the last activation output is relevant to this time-step’s
output; the output gate controls how much to reveal of the
cell state; and forget gates decide how much of the previous
cell state should be remembered. A GRU model, introduced
by Cho et al (7) is based on a similar architecture except with
only update and relevance gates.

We would expect LSTM models to outperform GRU models
given enough data and computational resources, since GRUs



are less complex (no cell state) and have fewer trainable
parameters. However, in many empirical applications their per-
formance is roughly equal and GRUs are sometimes preferable
due to their computational efficacy.(9) On smaller datasets, this
equivalence was observed to hold. However, when trained on
our larger (50,000 sample) dataset, we observed that LSTM
models performed worse than GRUs. GRUs outperformed
the baseline model, whereas LSTMs performed similarly to
RNNs. It is unclear why this occurred, and more hyperpa-
rameter tuning may be required to study this phenomenon in
greater detail. It is possible that LSTMs overfit on the data
whereas GRUs provide the right “balance” between long term
memory and model complexity.

C. Multi-headed Model

One problem with the sequence models described above is
that they cannot distinguish between static and dynamic data.
For example, there is static data about the game common to
all moves (e.g. the type of opening played, the time control
format) and dynamic data unique to each move This poses two
problems: first, it leads to computational wastage as we re-
learn weights for static features at every sequence step. More
insidiously, static data may be over-emphasized since the last
step of the sequence contains static data, but may not contain
the most relevant segments of dynamic data. Even if we zero-
pad static data, it may still have outsize influence on our LSTM
output relative to its actual importance. Thus we experiment
with a multi-headed architecture that concatenates the output
of the LSTM cell (run only on dynamic data), with the static
data features. This model ultimately performed similarly to
the standad LSTM model, suggesting that this optimization
did not yield substantive improvement and does not solve the
issue of learning long-range dependencies.

Fig. 1: Multi-headed Architecture

D. Transformer Models: More than meets the Eye

In order to potentially address longer-range dependencies in
our data, we turn to transformer models. Transformers models,

proposed in a seminal paper by Vaswani et al. (8), provide a
powerful way of tackling sequence problems such as language
modeling and machine translation that have been difficult for
traditional RNNs. It comprises an encoder stack and decoder
stack, both of which implement a multi-headed self-attention
mechanism. Through the attention mechanism, we hope that
the model can learn to “focus“ on the most salient parts of the
game through learning an adequate embedding (with the use
of positional encoding to tell us “where” in the game these
moves are played).

Note that the decoder is required so that the model can
piece together an output for a generation task (e.g. translating
a sentence into English). Since our output value is a scalar
value, not a sequence, we replace the decoder with two
dense feedforward layers. Such “encoder-only” models are
theoretically justified and have been used in settings such as
object detection (10) and particle physics modelling (11). After
(8), we use a transformers architecture with 6 attention heads, a
256-dimensional feedforward layer, and 6 sub-encoder layers.

On runs on a smaller dataset (approx. 10,000 samples),
transformer models had the best performance of the mod-
els discussed here. However, their computational complexity
made them difficult to train on larger datasets, requiring more
than an hour per epoch on our 50,000 sample dataset. Hence,
we were unable to complete training at the time of writing,
and report in II the most recent loss number.

E. Sequence Packing

We implement the optimization of packing a padded se-
quence. Packing sequences is an optimization intended to stop
the network from computing outputs for the padded layers of a
sequence. This is similar to masking padded sequences.4. For
many-to-many tasks, this appears to be primarily a efficiency
optimization: we can drastically speedup training for large
datasets with highly variable length sequences. (12) However,
for a many-to-one task, where we used the representations
from the last LSTM layer, this could potentially have a
material effect on the model, since we are using the output of
the last relevant index rather than the last index of the sequence
as a whole. We run the LSTM model on this improved
architecture. We achieve a result (table II) that is marginally
better than the baseline, and better than the vanilla LSTM
model.

F. Cross Entropy Loss

One of the potential problems with all the approaches above
was that the model may default to predicting the “average”
rating. In order to combat this, we turn the problem into a
classification one. Specifically, we created a class for every 100
rating points between 0 and 3000. This means that we have a
total of 3000/100 + 1 = 31 class that the model can choose
from. Thus, every label is assigned some class based on the
player ratings. Note that there are two players, and thus each
example sequence will correspond with two rating classes as

4Documentation for PyTorch implementation available at: https://pytorch.
org/docs/stable/generated/torch.nn.utils.rnn.pack padded sequence.html

https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.pack_padded_sequence.html
https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.pack_padded_sequence.html


its label. Our input is designed to output logits for each rating
class, which essentially corresponds to the confidence that the
model has that each player is of a particular class. Note that the
output of our model corresponds to the labels in that we output
two sets of logits, one corresponding to each player. Our loss
function is thus a multivariate Cross Entropy loss, which fits
our regime nicely. We designed this classification problem so
that the model loses the notion of an “average prediction,” in
order to incentivize it to learn the correct predictions based on
the input data.

From figures 4 and 5, we note that the loss is still quite high
(in the context of cross entropy loss), and the model is still
struggling to learn these predictions, demonstrating that this
is still a fundamentally difficult problem for RNNs to learn.
One reason this might be the case is that RNNs struggle to
learn long-range dependencies, and suffer from both exploding
gradients and vanishing gradients. In other words, the error
signal is likely not reaching the earlier layers, which hinders
the model’s ability to perform well in this task. Since the
model did not have high accuracy in a basic RNN architecture,
we focused our development process on the regression model.

VI. ANALYSIS

From Table II, we note that most of the L1 loss metrics
are within the 200 range. We note that the best performing
models are the packed LSTM and the GRU model. They are
the only sequence models that outperform the baseline on
50,000 sample dataset. However, we did not have enough time
and compute power to fully train the transformer architecture
on the 50,000 sample dataset. The success of packed LSTM
models verifies our intuition that part of the problem comes
from the length of sequence padding in certain games. As
discussed above, it is unclear why GRU models outperform
LSTMs and RNNs, though it could be because they provide the
right balance of model complexity and memory ability for this
problem. Additionally, overfitting remains a problem. From
Figures 2 and 3, it appears that the a minimum of the test loss
is found relatively early in the training process. Training loss
under LSTM can decrease to around 40 Elo points, suggesting
that model complexity is not a problem (rather, the model may
be too complex).

On the smaller dataset (e.g. 5000 examples), the transformer
model typically performed better than the baseline (at around
218 Elo Points deviation compared a baseline of 225). This is
expected due to the transformer’s ability to model and track
long-term dependencies, as well as learn which parts of the
games are very important. The other recurrent architectures
(e.g., RNN, LSTM) performed slightly worse than the trans-
former model on the small dataset, likely due to the fact that
predicting an accurate ELO rating for each sequence of moves
not only requires a deep understanding of the game, but also
the ability to determine which part of the games are actually
indicative of a strong or weak player. The transformer model
appears to achieve this goal, with its ability to learn the critical
parts of a chess game.

Despite using state of the art models, the fact that our
performance hovers in 200 range suggests that this particularly
problem is fundamentally challenging, even for humans. To
predict a player’s “true ELO” given only one game is quite
difficult, especially considering the various sources of noise in
our data, which include the possibility of upsets, the natural
variability in a player’s performance, and the volatility in
unofficial chess ratings from an online platform. Even though
we include engine position evaluations as a data source, a low-
skilled player can still have a favorable position when playing
against another low-skilled player. Due to the unavoidable
noise in our dataset, it is quite possible that players with a
200 rating point difference have similar levels of play. This is
especially true at the amateur and club levels, where blunders
and inaccuracies occur quite frequently, preventing the model
from determining a player’s ELO with more precision.

VII. FUTURE WORK AND CONCLUSIONS

In conclusion, we showed that predicting chess performance
can be modelled as a sequence problem, and sequence mod-
els perform similarly to feedforward neural networks when
parsing this information on large datasets.

We believe the following are important future directions:
first, we could improve feature engineering that brings in
more contextual cues about chess (e.g. the amount of material
remaining on the board at a given time, evaluation by more
than one chess engine, etc). Second, we need a more rigorous
framework for model selection and validation. Some of the
conclusions drawn on a smaller dataset (e.g. poor performance
of baseline NN model relative to RNNs) actually vanished
when we moved from a paradigm of 10,000 data points to
50,000 data points. Most of our hyperparameter tuning was
done on smaller datasets of 5-10,000 data points. Unfortu-
nately, due to time and compute limitations, we were not able
to re-tune the hyperparameters for the larger dataset or more
rigorously perform model selection. Finally, we could con-
sider other non-RNN based approaches, such as convolutional
neural networks or more traditional statistical methods (such
as those used by (3), which provide good performance for
predicting the win probabilities of different players in a head-
to-head match.

VIII. TEAM MEMBER CONTRIBUTIONS

Stanley Cao contributed the code and architecture for the
RNN model and the implementation of both the regression
and softmax based approach. Arthur Lee contributed to the
sourcing and pre-processing of data and helped to fine-tune
the regression based model.



REFERENCES

[1] A. Elo, “The proposed uscf rating system, its develop-
ment, theory, and applications,” Chess Life, vol. 22, no. 8,
pp. 242–247, Aug 1967.

[2] X. Yan, Y. Du, B. Ru, J. Wang, H. Zhang, and X. Chen,
“Learning to identify top elo ratings: A dueling bandits
approach,” CoRR, vol. abs/2201.04480, 2022.

[3] J.-M. Alliot, “Who is the master?” ICGA Journal, vol. 39,
no. 1, pp. 3–43, May 2017.

[4] M. Guid and I. Bratko, “Using heuristic-search based
engines for estimating human skill at chess,” ICGA
Journal, vol. 34, no. 11, pp. 71–81, 2011.

[5] D. Ferreira, “Determining the strength of chess players
based on actual play,” ICGA Journal, vol. 35, no. 1, pp.
3–19, 2012.

[6] K. Regan, “Intrinsic chess ratings,” Proceedings of 25th
AAAI Conference on, pp. 3–19, Aug 2011.

[7] K. Cho, B. van Merriënboer, D. Bahdanau,
and Y. Bengio, “On the properties of neural
machine translation: Encoder–decoder approaches,” in
Proceedings of SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation.
Doha, Qatar: Association for Computational Linguistics,
Oct. 2014, pp. 103–111. [Online]. Available:
https://aclanthology.org/W14-4012

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” CoRR,
vol. abs/1706.03762, 2017. [Online]. Available:
http://arxiv.org/abs/1706.03762

[9] S. Gao, Y. Huang, S. Zhang, J. Han, G. Wang, M. Zhang,
and Q. Lin, “Short-term runoff prediction with gru and
lstm networks without requiring time step optimization
during sample generation,” Journal of Hydrology, vol.
589, p. 125188, 2020.

[10] Z. Sun, S. Cao, Y. Yang, and K. M. Kitani, “Rethinking
transformer-based set prediction for object detection,” in
Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), October 2021, pp. 3611–
3620.

[11] S. Dutta, T. Gautam, S. Chakrabarti, and T. Chakraborty,
“Redesigning the transformer architecture with
insights from multi-particle dynamical systems,” in
Advances in Neural Information Processing Systems,
M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang,
and J. W. Vaughan, Eds., vol. 34. Curran
Associates, Inc., 2021, pp. 5531–5544. [Online].
Available: https://proceedings.neurips.cc/paper/2021/file/
2bd388f731f26312bfc0fe30da009595-Paper.pdf

[12] M. Kosec, S. Fu, and M. M. Krell, “Packing: Towards
2x NLP BERT acceleration.”

APPENDIX

https://aclanthology.org/W14-4012
http://arxiv.org/abs/1706.03762
https://proceedings.neurips.cc/paper/2021/file/2bd388f731f26312bfc0fe30da009595-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/2bd388f731f26312bfc0fe30da009595-Paper.pdf


TABLE II: Model architectures and their corresponding L1 Loss

Model Hidden States Units in Fully Connected Layer L1 Loss on test set (Elo units)
Baseline NN - 128 209.64
Baseline NN - 256 211.51

RNN 256 256 229.55
GRU 256 256 203.13

LSTM 256 256 225.85
Packed LSTM 256 256 207.88

Multi-headed LSTM 256 256 224.39
Transformers - 256 219.80

Fig. 2: Loss Function for Baseline Model

(a) Training Loss (y-axis) vs Number of Epochs
(x-axis)

(b) Test Loss (y-axis) vs Number of Epochs (x-
axis)

Fig. 3: Loss Function for LSTM Model

(a) Training Loss (y-axis) vs Number of Epochs
(x-axis)

(b) Test Loss (y-axis) vs Number of Epochs (x-
axis)



Fig. 4: Cross Entropy Training Loss (y-axis) on 92 Epochs (x-axis)

Fig. 5: Cross Entropy Test Loss (y-axis) on 92 Epochs (x-axis)


	Introduction
	Related Work and Novelty
	Dataset
	Baseline
	Methods and Models
	RNN Model
	LSTM and GRUs
	Multi-headed Model
	Transformer Models: More than meets the Eye
	Sequence Packing
	Cross Entropy Loss

	Analysis
	Future Work and Conclusions
	Team Member Contributions
	Appendix

