
Creating a Robust Audio Representation via Self-Supervised
Contrastive Learning for Speaker Diarization

Priya Khandelwal and Neel Narayan
Department of Computer Science

Stanford University
priyak9@stanford.edu and neelsn@stanford.edu

Code: https://github.com/neelsnarayan/cs230_final_project

Abstract

Self-supervised contrastive learning is a technique that encourages different augmentations of the same input
to have more similar latent representations, and distinct inputs to be very far apart in the embedding space.
Thus, contrastive learning seems to be a promising way to train a model to generate acoustic embeddings for
speaker diarization: the task of identifying which segments of an audio clip containing multiple speakers were
spoken by the same person - a task that is usually done by clustering embeddings. In this paper, we explore
the effectiveness of this novel framework by training and testing a SimCLR-inspired self-supervised model
on the Flickr Corpus dataset after generating multiple augmentations, or "views," of different single-speaker
audios. We compare our model’s diarization error rate (DER) against LSTM d-vector baselines and existing
works for speaker diarization. Our model outperformed the baselines, achieving a DER of 0.189, indicating
that with a more complex clustering approach, this architecture is expressive enough to generate competitive
embeddings for speaker diarization. We conclude that with additional improvements, this method can achieve
even more robust performance.

1 Introduction

AI tools like Amazon Alexa, Google Home, and IBM Watson
make an attempt to identify the speaker in question when pro-
cessing audio–also known as automatic speaker diarization–but
still lag far behind human proficiency.[1][2]

After large audio chunks are broken down into single speaker
segments, SOTA (state of the art) speech diarization workflows
typically take two main steps: translating the segments to some
latent embedding and then clustering them in the embedding
space to distinguish between speakers.[2]

Contrastive learning is a self-supervised technique that encour-
ages different augmentations of the same input to have more
similar latent representations, and distinct inputs to be very far
apart in the embedding space. For vision-language models and
variational autoencoders, contrastive learning has proven to be
highly successful in learning robust representations of images.
However, its use in generating representations for audio data
is largely unexplored.

In our project, we train a contrastive learning method on audio
data to discover a more robust and granular representation
for acoustic information, allowing for better clustering of au-

dio embeddings for downstream tasks, particularly speaker
diarization.

2 Related Work

A traditional ML-based approach to generating latent represen-
tations for audio is i-vectors, which are created after applying
a dimensionality reduction technique to the audio data that
has been embedded via a GMM model. However, i-vectors
make the assumption that the audio data follows a Gaussian
distribution. d-vectors, on the other hand, average the acti-
vations in the last hidden layer of the RNN’s, time-delayed
neural networks, or transformers.[3][4][5].

However, both of these approaches heavily rely on labeled data
and do not actively prioritize augmentation invariance.

Contrastive learning has recently been applied to language-
agnostic emotion recognition in audio data and end-to-end
speech translation. Google Cloud has also recently added
speech-to-text API that incorporates successful diarization ca-
pabilities trained on an unsupervised framework. Given this

,

https://github.com/neelsnarayan/cs230_final_project

promising work, we think a self-supervised approach can be
applied to speech diarization.[6][7].

3 Dataset

The dataset we use for training, validation, and testing is
the Flickr 8k Audio Caption Corpus. This corpus contains
40,000 english-spoken captions of 8,000 images narrated by
183 unique male and female speakers. The audio clips range
from 3-7 seconds each, with variance in volume, speed, enun-
ciation, and accent, thereby allowing for more robust training.
Sample expressions from the audio files contain captions such
as "two children are playing ice hockey on frozen ground out-
side" and "a man rides a bicycle on a rocky trail along a large
river." The data is sampled at 16000 Hz with 16-bit depth, and
is stored in the Microsoft WAVE audio format. We use an
80%-10%-10% split.

For additional testing, we used the JL Corpus, a dataset of
4 male and female speakers speaking 2400 English phrases
in 7 different emotions that we presume closely follows the
distribution of the data we used for training.

3.1 Baseline Preprocessing

All of our data preprocessing for the baselines is done in pre-
processing.py. With the Flickr Corpus, we were provided with
a text file that mapped each .wav to the index of a specific
speaker. From this, we could leverage the ’who said what’
mappings. To model the human hearing property at the feature
extraction stage, we decided to use the Mel scale to map the
audio data to the frequency that mimics what humans would
perceive (humans perceive changes in low frequency sounds
with more nuance than they do changes in high frequency
sounds). We extract 40 Mel Frequency Cepestral Coefficients
(MFCCs) from each audio sample using the python Librosa
package and store them in a .npy file, and then save them all
in our train_features folder. In the event that the .wav files
are given to us in a different format, we wrote a program (cre-
ate_text_file.py) to generate a space delimited text file with
each .wav representation corresponding to the speaker present
in that audio sample. We used this approach on the additional
JL corpus test set as well.

3.2 Contrastive Data Augmentations

In contrastive learning, the choice of the data augmentation
technique is the most crucial hyperparameter since it directly
affects how the latent space is structured and influences the
view-agnostic robustness of the model. In particular, we want
to choose data augmentations that still preserve speaker iden-
tity for the same input. Since our contrastive learning approach
is primarily vision-based (explained further in the methods
section), we decided to feed spectrograms into the model in-
stead of MFCCs. Our novel insight is that if we generate
acoustic augmentations to the raw audio before generating
spectrograms, and then visual augmentations after generat-
ing spectrograms, we obtain more meaningful views for the

contrastive method to train on and learn more generalizable
features.

The transformation that we chose to apply to our samples was
a time stretch implemented in torchaudio, which we applied by
randomly speeding up/slowing down parts of the audio. This
highlights certain voice features such as pitch and vocal timbre,
which are unique to speakers, but don’t fundamentally alter
the audio.

After applying the time stretch contrastive data augmentation
technique, we generate spectrograms of each audio sample and
choose visual augmentations based on existing literature. On
our spectrograms, we randomly crop and resize the images,
allowing us to distinguish between two situations: having a
local view of the spectrogram, and having a neighboring view.
In hyperparameter tuning, we found that relatively large crops
made the most sense, as zooming into a small region of a
spectrogram removes insight about its amplitude, frequency,
etc.

Finally, we use torchvision to apply three other transformations
on the already cropped and resized spectrogram: slight color
distortion by changing the brightness, contrast, saturation, and
hue, random grayscale conversion, and convolutional gaussian
blur. In total, we generate 6 distinct random views of each
image, and the dataloader chooses 2 at random from those 6
during each positive training step.

Without these three additional transformations, the model
might end up focusing only on the color histograms of the
images and ignore other more generalizable features. By dis-
torting the spectrograms and generating different views, the
model cannot rely on this simple feature anymore. We’ve now
generated spectrogram views that are distinct but that are easily
distinguishable from speaker to speaker. Examples are shown
in Figure 1: there are two randomly selected augmentations
of the same speaker for 6 distinct speakers, as selected by the
dataloader.

4 Methods

4.1 Baseline: d-vector LSTM

Though our initial plan was to have two baselines, a d-vector
used jointly with manually extracted linguistic features, and
LSTM, we instead decided to make one baseline with a d-
vector of an RNN and try treating both the ReLU dense layer

2

https://dagshub.com/michizhou/Flickr-Audio-Caption-Corpus
https://www.kaggle.com/datasets/tli725/jl-corpus

Data Augmentation

Hyperparameter Description Value

Time Stretch stretch short-time fourier transform in time without
modifying pitch

n_freq = 401, fixed_rate
= random(0.5, 1.5)

Random Resized Crop randomly crop and set image to specified size size = 128
Color Jitter randomly change the brightness, contrast, satura-

tion and hue of image with given probability
brightness = contrast =
saturation = .5, hue = .1,
prob = .8

Random Grayscale randomly gray image with a specified probability prob = .2
Gaussian Blur blurs image with randomly chosen Gaussian blur kernel size = 9

Contrastive Model

Hyperparameter Description Value

Batch Size number of samples per propagation size = 256
Hidden Dimensions size of hidden layer num_dimensions = 128
Temperature factor to divide logits by to control randomness of

predictions
temp = .07

Weight Decay penalty to add to cost function to shrink weights decay = 1e-4
Max Epochs number of passes through neural network epochs = 500

Table 1: Hyperparameters

and the Softmax dense layer as embeddings. In particular, we
trained an LSTM on a speaker classification task and tried
each of the aforementioned layers as a latent embedding for
the downstream speaker diarization/clustering task [4].

The architecture of the seqential layers is as follows: there are
two LSTM cells with a hidden unit size of 64, a dense layer
of 350 units with ReLU activation and dropout (with 0.3 drop
probability), and a dense layer of 500 units with a softmax
activation. With the dense layers, there are two important
considerations: (1) we add 350/500 units to the layer despite
there only being 183 unique speakers in our data to guarantee
separation and ease of distinction between each speaker (i.e.
sparsity) and (2) we use softmax as our activation function
because we are then implicitly clustering our speakers.

We implemented our RNN with Keras and Tensorflow. After
doing a grid search on different values for the following hy-
perparameters, we ultimately found best performance to be:
Adam Optimization with a learning rate of .0001, batch sizes
of 32, and 500 epochs. We use sparse categorical crossen-
tropy loss as our loss function and optimize on accuracy as
our metric. Though the model metrics are not relevant to the
clustering and diarization process, we report them as such:
the model achieves a 98.89% accuracy on the val dataset, and
though there may be some overfitting here, the model achieves
a 95.44% accuracy on the test dataset, so we assume it is safe.

4.2 Contrastive Learning

Our main approach achieves a contrastive objective rather than
a traditional predictive objective for generating embeddings.
The loss function for a positive pair of examples is as follows:

Li,j = − log
exp (sim(zi,zj)/τ)∑2N

k=1 1[k ̸=i] exp (sim(zi,zk)/τ)

Here, sim is defined as the cosine similarity between two vec-
tors, which is computed after normalizing all the features in
the L2 sphere. The indicator function in the denominator is
used to capture only the pairs that contain the vector of interest,
and the numerator contains positive pairs with the vector of
interest. This loss is quite similar to cross-entropy or InfoNCE.

Figure 2: Self Supervised Model Architecture

3

Inspired by SimCLR, our self-supervised model architec-
ture is as shown in Figure 2. We have a CNN encoder
(ResNet18) followed by an MLP (the FC layer of the CNN,
then ReLU/Softmax, and Linear layer) to generate a vector
representation of two audio clips from the same speaker. In one
version of our model, the last layer of the CNN uses ReLU, and
in another, we try softmax. We are training the model to maxi-
mize agreement of same-speaker representations (green), and
vice versa for different speakers (red), and use the according
losses.

We implemented our contrastive models with PyTorch, taking
help from torchvision and lightning modules for the training
loop. After doing a grid search on different scales (e.g. 10 to
1000 for epoch) for the following hyperparameters (as shown
in Table 1), we ultimately found best performance to be: batch
size of 256, hidden dimension (final embedding size) of 128,
learning rate of 5e−4, temperature of 0.07, weight decay of
1e−4, and 500 epochs, though the best model checkpoint was
achieved at epoch 491 in the ReLU model and epoch 496 in the
softmax model. Both models converged, and though accuracy
is not relevant to the final clustering goal, loss and accuracy
plots from training and validation are provided in Figure 3
(listed in section 4.4).

4.3 Clustering

Based on literature, we decided to cluster the audio embed-
dings for the unseen test data using spectral clustering with
cluster-qr for k=number of labels (number of distinct speak-
ers). We also tried clustering on the additional test dataset (JL
corpus) with k = 4, but results are not provided due to limited
space in the paper. Though there are more refined and nuanced
clustering methods using SOTA work, spectral clustering is
known to still be reasonably effective for speaker diarization,
and since the primary focus of our project is generating em-
beddings, we determined this to be sufficient.

4.4 Experiments, Evaluations, and Metrics

We then computed the diarization error rate (DER) on the clus-
tered embeddings, which is the most widely used diarization
metric[7]. DER is the ratio between the sum of false alarm,
missed detection and confusion, to total duration of speech:

DER = confusion + missed + false
total duration of speech

Even though our test data contains single speaker audios, we
simulated a continuous stream of audio by joining together
single-speaker audios with random segments of silence to
model the speaker diarization use case where multiple speak-
ers are present in a single audio.

We had two sets of hyperparameters to tune – one for data aug-
mentations, and one for model training. The former was set
using values that were successful in other similar works. For
the latter set of hyperparameters, we performed a grid search
across different values to reach an optimal setting. The list of
hyperparameters, their meaning, and final values are outlined
in Table 1. Accuracy and loss plots for for both self-supervised

contrastive models (orange - ReLU, blue - softmax) in 500
epochs are shown in Figure 3.

Figure 3: 1: Train Accuracy, 2: Validation Accuracy, 3:
Train Loss, 4: Validation Loss

5 Results

Diarization Error Rates on Unseen Test Data

Embedding Technique DER

LSTM d-vector (ReLU) .667
LSTM d-vector (Softmax) .455
Contrastive (ReLU) .205
Contrastive (Softmax) .189

Table 2: Diarization Error Rates

From the DERs computed on the test set, we can see that the
Softmax self-supervised model achieves the lowest DER. Over-
all, the self-supervised method does better than the baselines,
and the softmax versions do better than the ReLU versions.
Though we are not exactly sure why this is the case, training
on different hyperparameter permutations for these activations
support the conclusion that softmax versions outperform ReLU
versions with DER as our metric. SOTA DERs have been as
low as 0.12, but they use more complex clustering methods [5].
Since we are using a simple spectral clustering but achieve a
DER of 0.189, this indicates that the self-supervised architec-
ture we have devised holds promise if used in tandem with a
better clustering method.

6 Future Work

Overall, this approach can be further bettered by incorporat-
ing diffusion or momentum distillation, experimenting with
MOCO-adjacent architectures, and further tuning the aug-
mentation and training hyperparameters. Our datasets also
didn’t have much noise, which we corrected for by adding
some random noise in the augmentations, but fine-tuning this

4

model with data that has background noise would also make
it more useful for real life deployment. One potential pitfall
of this approach is that it primarily explores a vision-based
self-supervised approach, but perhaps a better model might
use a transformer before the MLP and accept augmented views
of an MFCC as the input instead of spectrograms. Though we
are not entirely certain what those augmentations would be, it
is worth experimenting with.

7 Contributions

Both team members contributed equally in writing the prepro-
cessing and model code (pair coding) as well as the writeup.
We would also like to thank our TA, Skanda Vaidyanath, for
all the helpful feedback and support!

References

[1] Team Symbl. “What Is Speaker Diarization?” Symbl.ai, 31 Aug.
2022, symbl.ai/blog/what-is-speaker-diarization/.

[2] Aronowitz, Hagai, and Weizhong Zhu. “New Advances
in Speaker Diarization.” IBM Research Blog, 5 Nov. 2020,
www.ibm.com/blogs/research/2020/10/new-advances-in-speaker-
diarization/.

[2] Bower, J.M. & Beeman, D. (1995) The Book of GENESIS: Ex-
ploring Realistic Neural Models with the GEneral NEural SImulation
System. New York: TELOS/Springer–Verlag.

[3] Kamarudin, Noraziahtulhidayu, et al. “Feature Extraction Using
Spectral Centroid and Mel Frequency Cepstral Coefficient for Quranic
Accent Automatic Identification.” 2014 IEEE Student Conference on
Research and Development, 2014, doi:10.1109/scored.2014.7072945.

[4] Doddipatla, Rama, et al. “Speaker Adaptation in DNN-
Based Speech Synthesis Using D-Vectors.” Interspeech 2017, 2017,
doi:10.21437/interspeech.2017-1038.

[5] Dissen, Y., Kreuk, F., Keshet, J. (2022, April 8). Self-supervised
speaker diarization. arXiv.org. Retrieved December 9, 2022, from
https://arxiv.org/abs/2204.04166

[6] Google. (n.d.). Detect different speakers in an audio record-
ing | cloud speech-to-text documentation | google cloud. Google.
Retrieved December 9, 2022, from https://cloud.google.com/speech-
to-text/docs/multiple-voices

[7] C Sailaja et al 2021 J. Phys.: Conf. Ser. 1804 012166

[8] A review of speaker diarization: Recent advances with Deep
Learning - arXiv. (n.d.). Retrieved December 10, 2022, from
https://arxiv.org/pdf/2101.09624

[9] Learning embeddings for speaker clustering based on
Voice Equality. (n.d.). Retrieved December 10, 2022, from
https://www.researchgate.net/publication/321785520_Learning_embeddings_
for_speaker_clustering_based_on_voice_equality

[10] Speaker diarization. Speaker Diarization -
NVIDIA NeMo. (n.d.). Retrieved December 9,
2022, from https://docs.nvidia.com/deeplearning/nemo/user-
guide/docs/en/stable/asr/speakerdiarization/intro.html

[11] Speaker diarization using Deep Neural Network embeddings
- danielpovey.com. (n.d.). Retrieved December 10, 2022, from
https://www.danielpovey.com/files/2017icasspdiarizationembeddings.pdf

5

	Introduction
	Related Work
	Dataset
	Baseline Preprocessing
	Contrastive Data Augmentations

	 Methods
	Baseline: d-vector LSTM
	Contrastive Learning
	Clustering
	Experiments, Evaluations, and Metrics

	Results
	Future Work
	Contributions

