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Abstract

Folding laundry has remained roughly the same for the past few decades, being
a tedious and labor-intensive task. This project aims to develop an algorithm for
distinguishing between 14 different types of clothing given a database of 4961
images. We explored three different methodologies to conduct this classification:
a regular convolutional neural network approach, a transfer learning approach
with ResNet50, and a supervised contrastive learning approach. The supervised
contrastive learning method ended up being the most effective with a training
accuracy of 81% and a test accuracy of 63%, while the other two methods trailed
behind. Due to the small sample size and insufficient standardization of the dataset,
our models were subject to overfitting.

1 Introduction

As college students living in dorms, we face the problem of dealing with chores while surviving
through the academic challenges in school. This motivated us to think of ways to automate our
weekly chores, specifically laundry.

Laundry has increasingly become more convenient, due to commercial washing and drying machines.
The global market for Commercial Laundry Machinery was estimated at $4.4 Billion in the year 2022
and is projected to reach a size of $5.9 Billion by 2026 (Global Industry Analysts). However, folding
laundry has remained roughly the same for the past few decades, being a tedious and labor-intensive
task. We propose the development of an automated machine, where users can fold large amounts of
laundry quickly and easily. This can be particularly useful for services like hotels that deal with large
amounts of laundry, and people with busy schedules, disabilities, or limited mobility.

An automated folding machine would require specialized hardware with sensors, cameras, and
mechanical arms, with a robust multi-class image classification algorithm to accurately identify and
manipulate items of laundry. This project aims to develop such an algorithm, for distinguishing
between different articles of clothing given an image. The input to the algorithm is images of clothing.
We then use a neural network to output the category of the clothing, allowing us to sort pieces of
laundry from images.

A major challenge to the proper classification of multiple clothing types is that different articles of
clothing may look significantly different, but be of the same class. For instance, two shirts could have
significantly different designs, colors, and sizes. This is in contrast to many other image classification
problems, like handwriting identification with the MNIST dataset, where two images of the same
class will be quite similar, even being written slightly differently. This presents a challenge to accurate
classification, which we will discuss in this study.
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2 Related work

There are several methods for performing a multi-class image classification problem. CNNs have been
shown to be effective at learning complex and nuanced visual patterns from the data, allowing them
to accurately classify images into multiple classes. This has been demonstrated in various studies,
which have applied CNNs to different datasets and tasks. For example, Krizhevsky et al. used a CNN
to achieve state-of-the-art performance on the ImageNet dataset, which contains millions of labeled
images from 1000 different classes. Another early application of successful CNN was to classify
handwritten digits called the MNIST (Modified National Institute of Standards and Technology)
database. With 70,000 monochrome handwritten digits that have been size-normalized and centered
in a fixed-size image, CNN showed great accuracy for classification. Ezat et al. compared the
performance of CNN models to other classification algorithms, showing that CNN performed better
than the super-vector coding and support vector machines (SVM).

Another method for multi-class image classification is to use transfer learning. This involves the use
of a pre-trained model on an enormous dataset and then fine-tuning it on a smaller dataset for the
specific task at hand. He et al. proposed the ResNet model, which introduced the concept of skip
connection and achieved improved performance on a variety of image classification tasks.

Reddy and Juliet used ResNet to classify Malaria cell images. Using 27,558 images of infected and
uninfected cells, the input images were given to the ResNet50, with a batch size of 100. They used
the Stochastic Gradient Decent (SGD) for their optimizer and Cetegorial-Cross Entropy for their loss
function, giving an accuracy of 95.4% (Reddy and Juliet).

There has been various studies using different pre-trained models in transfer learning. Lu et al.
used AlexNet to classify brain images as normal or abnormal. Jain et al. proposed a deep transfer
learning-based Alzheimer’s disease diagnosis system, using the pre-trained Vgg-16 model. Talo et al.
implemented a CNN for a 5-class brain disease detection using MRI images. This study compared
performances using AlexNet, Vgg-16, ResNet-18, ResNet-34, and ResNet-50. The study showed
that ResNet50 obtained the best classification accuracy of 93.23%, while the lowest classification
performance was the AlexNet model with 80.11% accuracy (Talo et al.).

Supervised Contrastive learning has also been applied to multi-class image classification with promis-
ing results. Khosla et al. described a method in which they extended the traditional unsupervised
or self-supervised contrastive learning approaches (with implementations such as SimCLR), to a
fully-supervised application. Unsupervised and self-supervised contrastive learning excels when
there is a lack of sufficient labeled data, but supervised contrastive learning is able to make good use
of labeled data when it is available (Khosla et al.).

3 Dataset and Features

As our dataset, we used the Clothing Dataset by Alexey Grigorev. This dataset consists of 5,403
labeled images of clothes. It comprises of thousands of crowdsourced images of clothing that have
been submitted to form the dataset. The images were labeled as either of the following:

• T-Shirt (1011 items)
• Long Sleeve (699 items)
• Pants (692 items)
• Shoes (431 items)
• Shirt (378 items)

• Dress (357 items)
• Outwear (312 items)
• Shorts (308 items)
• Hat (171 items)
• Skirt (155 items)

• Polo (120 items)
• Undershirt (118 items)
• Blazer (109 items)
• Hoodie (100 items)

The dataset that we used had all the images in a single directory, unsorted. We first wrote some
Python code to sort them into directories.

Since some of the rarer classes in the dataset only had a handful of images, we planned to train on
classes with at least 100 images. This cut the dataset down to the top 14 classes, consisting of 5,268
labelled images. The images are of varying sizes and resolutions, so we scaled each of them down
to a common, compressed resolution to expedite training. We normalized images by scaling pixel
values by 1/255, corresponding to 128*128 pixels. Given the high imbalance and small number of
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data in the number of images, we conducted data augmentation. We flipped the image horizontally
and vertically, and did a random rotation between ±0.2 of a full rotation (e.g. 0.5 would correspond
to 180° rotation).

Figure 1: Examples from the
Dataset

After the data processing, we had 3600 training, 900 validation, and
461 test examples. Figure 1 shows some examples from the dataset.

4 Methods

In the study, we tried using 3 different algorithms. We first used a
basic CNN model, then implemented transfer learning with ResNet-
50, and Supervised Contrastive Learning.

4.1 Basic CNN

For our first attempt, we used a basic CNN for multi-class classifi-
cation. CNNs are composed of convolutional layers, pooling layers,
and fully-connected layers. We implemented our convolutional layer
with 2 layers. These layers are responsible for extracting features from the input image, which are
done by convolving the input with a set of learnable filters and detecting different visual patterns. We
then had a pooling layer to downsample the data. This reduced the dimensions, making the model
more efficient. For the fully-connected layer, we used the softmax for the activation function to make
multi-class predictions based on the extracted features.

For our model, we started off with a normal tf.keras.Sequential() model with several Conv2D() and
MaxPool() layers, followed by a Flatten(), Dense(), and output layer.

To train our CNN model, stochastic gradient descent was used to minimize the loss function. For
our loss function, we used the Sparse Categorical Cross-entropy from Karas, rather than Categorical
Cross-entropy, because our Yi are not one-hot vectors but intergers of class indices. Using sparse
categorical cross entropy saves time in memory and computation, as it just uses an integer instead of
a whole vector. The loss function for the Sparse Categorical Cross-entropy is as follows: where w is
the model parameters; yi is the true label; ŷi is the predicted label. Below are the hyperparameters
used for the model.

J(w) = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

num_train = 3600
num_validate = 900
num_test = 461
epochs = 50

batch_size = 16
img_shape = (128, 128, 3)
learning_rate = 0.001
optimizer: Adam

As the model was trained, the weights of the filters in the convolutional layers are adjusted to
maximize the accuracy of the predictions.

4.2 ResNet-50

Since training deep learning models from scratch requires a large database of images and computa-
tional power, transfer learning has been an effective solution. Specifically, Residual learning allows
us to solve the problems that arise when trying to train deeper neural networks, such as varnishing
gradients and degradations. The Residual Network (ResNet) consists of stages with residual blocks
with identity connections, where a layer is connected to the next layer and also to layers a few skips
away. The ResNet-50 is a specific implementation of the ResNet model with 50 layers that has
been pre-trained on the ImageNet dataset, containing millions of labeled images from 1000 different
classes.

In transfer learning, only the classifier is trained in the network, while the features learned from the
pretrained dataset are transferred. In our implementation, we implemented transfer learning with the
ResNet50 network with the same Sparse Categorical Cross-entropy from Karas as the loss function.
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We also have the same Flatten(), Dense(), and output layers as before, right after the ResNet50
network.

4.3 SupCon

Supervised Contrastive Learning (SupCon) is a CNN model that is designed for representation
learning, which trains a model to learn representations of an image, helping it better classify those
images later. For our SupCon model, we used a contrastive loss function that measures the similarity
between the representations of different data points. The objective of this model is to minimize
this loss so that the representations of similar data points are more similar to each other than the
representations of dissimilar data points. This results in the model being able to push similar images
closer together and dissimilar images further apart. In our model, we first trained an encoder that
will help encode the features of an image. This way, images with similar features will be encoded
similarly, and vice versa. For this encoder, we implemented transfer learning with the ResNet50V2
architecture, which we then continued to train. Then, we train a regular classifier on top of the
pre-trained encoder, which includes a number of Dense layers.

We used the same hyperparameters from Method 4.1, with two additional hyperparameters:

temperature: 0.05
projection_units = 128

5 Results and Discussion

5.1 Basic CNN

Figure 2: Train and Val Accuracy for
Basic CNN

Figure 3: Train and Val Accuracy for
ResNet50

Figure 4: Train and Val Accuracy for
SupCon

Our basic CNN achieved a training accuracy of 77% but
a test accuracy of just 25%, demonstrating a severe case
of overfitting. For reference, the probability of randomly
guessing a classification from 14 classes is about 7%, so
this model is still better than a random guess. However, an
accuracy of just 25% is extremely low and such a model
would be unusable in the real world.

5.2 ResNet50

Our transfer learning approach with ResNet50 performed
better, with a training accuracy of 91% and a test accuracy
of 50%. Still, the model overfits, with the training accuracy
being considerably higher than the test accuracy, but it is
a vast improvement from our basic CNN. Our results here
demonstrate not only the incredible potential of transfer
learning to improve upon our own model, but also the lack
of quality within our data, with a complex network like
ResNet50 still unable to reliably find many trends within
our dataset.

5.3 SupCon

Our supervised contrastive learning model performed the
best compared to our other methods, with a training ac-
curacy of 81% and a test accuracy of 63%. It is apparent
that the SupCon model still suffers from overfitting to the
training data, but to a lesser extent than our other models.
By learning some features of the images and grouping
similar images together, it has been able to achieve higher
accuracy than our transfer learning model.
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5.4 Discussion

Figure 5: Accuracy after 50 epochs

Our results show that the transfer learning approach
performed better than just a basic CNN, and that our
supervised contrastive learning model performed bet-
ter than the ResNet50-based approach. However, all
three models suffered from overfitting to our training
dataset to varying degrees.

Before even working on the model, we spent quite
a lot of time on just installing TensorFlow and other
required libraries. We both have M1 Macbooks, and
TensorFlow has many issues with Apple Silicon. Ten-
sorFlow was simply not in our Pip, even after many
Pip reinstalls and Python downgrades. Even when
it was there, the installed version would not import
("error: illegal hardware instruction"). Finally, we
found an Apple fork of TensorFlow that, with much tinkering, finally seemed to work. In the future,
working with a cloud computing service such as AWS or Google Cloud might be a reasonable
workaround until maintainers of TensorFlow and other libraries improve compatibility with the
relatively-recent Apple Silicon hardware.

The main limitation of our project was in the quality, or lack thereof, of our data. There were
several major, glaring issues with our dataset. First, there were not very many images. With about
5,000 images in total, split among 14 classes, that makes for a pretty small sample size per class.
Additionally, there was a large imbalance between the number of images per class. For instance,
there were over 1,000 T-Shirt images, but only 100 Hoodie images. This definitely impacted the
quality of our models, as having just 100 images for any given class is nowhere near enough to train
a high-quality, robust classifier.

Furthermore, the images from within the dataset were crowdsourced from various social media
campaigns and company sponsorships. The images were taken by the users themselves and submitted
to be used in the dataset. This helps the dataset creators more easily acquire images for the dataset, but
the downside is that user-submitted images are quite inconsistent and may have varying backgrounds,
camera specifications, zoom, and picture angles. In a hypothetical laundry folding machine, if pictures
of clothes were to be taken before folding, lighting, angles, and camera quality would be the same
across any machine and any piece of clothing, which would help a model operate more effectively.
The lack of standardization and a certain level of image quality, coupled with the relatively small size
of our dataset, led to subpar performance of all of our models. For a similar project to be conducted
in the future, a more extensive and higher-quality dataset should be used.

Other potential algorithms to be explored in the future include transfer learning with a variety of
other types of pre-trained networks, such as MobileNet, VGG, or Inception. Additionally, algorithms
from a different paradigm than the one we investigated, such as random forest classification, could
have the potential for this task.

6 Conclusion

Our project attempted to classify images of clothes into different types, which would be applicable
to a (yet-to-be-developed) laundry sorting machine. We explored three different methodologies to
conduct this classification: a regular convolutional neural network approach, a transfer learning
approach with ResNet50, and a supervised contrastive learning approach. The supervised contrastive
learning method ended up being the most effective, while the other two methods trailed behind. Due
to the poor quality of our dataset, our models were subject to overfitting our training set, and in the
future, more should be done to procure higher quality and larger amounts of data.

5



7 Contributions

Andy worked on the database preprocessing and augmentation, research and architecture of the
SupCon model, generating diagrams for the results section, and constructing code for the improved
SupCon model. Hiro worked on researching literature on related works and different models,
explanation of algorithms in methods, architecture and constructing code for the baseline model. We
worked together on coding up the models, tuning hyperparameters, and discussing results.
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8.2 Database and Libraries

Dataset URL: https://github.com/alexeygrigorev/clothing-dataset
Code URL: https://github.com/andy0liang/laundry-sorting
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