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Abstract

It is costly to remodel a room and drafting designs for it can be time consuming. To better visualize a
room before starting the work to remodel it, it would be helpful to apply well-known styles (modern,
minimalistic, contemporary, etc.) to visualize the space and ensure it aligns with the owner’s desires.
We utilize an autoencoder architecture with block training, high frequency residual skip connections,
and a bottleneck feature aggregation to achieve photorealistic style transfer of interior rooms.

Github repo: https://github.com/mariemchu/PhotoNetWCT?2.git[3]]
WCT Baseline repo: https://github.com/eridgd/ WCT-TF

1 Introduction

To give the owner of a home a better idea of how a room would look in their preferred style before remodeling, we
aim to apply style transfer to interior rooms. Deep Neural Networks have been applied to object and face recognition.
In 2015, Gatys et.al applied this to the realm of fine art [3]]. They took natural images and stylized them with famous
artworks by extracting the content representation and style representation of each image. In 2017 Li et al. introduced
and autoencoder approach to the task [6]. We expanded these works to style transferring of rooms in a home. The input
to our algorithm is an image of a room used as the content and another image of a room used as the style. Our final
model uses an autoencoder approach, like that of Li et al. to output a generated image of the room with the new style.

2 Related Work

Photorealistic Style Transfer with Autoencoders: In this project we chose to use an auto encoder architecture. Early
works with this method were first introduced by Li et al. in Universal Style Transfer via Feature Transforms. Although
these methods had promising results, some produced poor stylization effects, required segmented images, or were too
parameter heavy. We aim to address these issues with our proposed model that combines the approaches from An et al.
[1]] and Chiu and Gurari [2]. The approaches taken by each will be described in the methods section.

3 Dataset and Features

To train the autoencoder we will use the MSCOCO [4]] dataset that was used in a few of the WCT papers. In the training
set of this dataset there are 118,288 images, 5000 images in the validation set, 40670 and images in the test set. We also
used the ADE20K [9] dataset for our initial semantic segmentation approach (described in experiments below) which
has 25,574 training images and 2,000 images in the validation set. This dataset contains the semantic segmentation of
each scene. However it also includes images of not only indoor rooms but also outdoor spaces, cities, factories, etc.
After filtering out irrelevant images we were left with 6118 training images and 523 validation images. We used these
images to produce final stylized results of different rooms. However, the segmentation of these images aren’t perfect
which we discuss in experiments below.
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Figure 1: MSCOCO Figure 2: ADE20K

4 Method and literature review

Like Li et al. we used an autoencoder architecture to perform style transfer. We will discuss the method that our model
performs style transfer through the previous papers it builds upon in this section.

Our final model is an autoencoder architecutre using the baseline of WCT. The VGG-19 network is used as the feature
extractor (encoder) and a symmetric decoder is trained on images from the MSCOCO dataset to invert the VGG-19
features and reconstruct the content image. The decoders are trained to minimize pixel reconstruction loss and feature
loss:
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After training, the encoder and decoder are fixed. To perform style transfer both the content and style images are fed into
the encoder to extract the vectorized feature maps. WCT (whitening and coloring) transformations are then performed
to make the featurized content match the covariance matrix of the featurized style. The whitening step maintains the
global structure while the coloring step introduces the style from the style image. This is then decoded to reconstruct
the image with the new style [6].

For our autoencoder we looked at related research in the field to guide our design process. Two other related models
sought to improve upon the vanilla autoencoder by modifying the downsampling and upsampling layer. In PhotoWCT,
it was replaced with pooling and unpooling to preserve spatial information, reduce artifacts and make the image more
photorealistic. An additional post smoothing step was also introduced to remove artifacts using the original content
image [7]. In WCT?, the pooling and unpooling layer in the VGG encoder and decoder was replaced with a wave
corrected transfer that would perfectly reconstruct a signal without post processing steps. WCT? introduced skip
connections as well as usage of segmented images to produce better results.[8].

An et al. then tackled the problem of the lack of style introduced in WCT?’s skip connections and the need for
segmented images to produce photorealistic results. An autoencoder called PhotoNet was used with the pretrained
VGG-19 as the encoder and a decoder that would reconstruct the image, similar to the variations of WCT from
before. However, PhotoNet also introduces a bottleneck feature aggregation (BFA) module at the bottleneck which
concatenates multi-scale features produced by different levels of the network. It does this by resizing features from
ReLU_1_1to ReLU_4_1 to the size of ReLU_5_1 in the VGG encoder, and then concatenating them together at the
bottleneck. Feature aggregation enables networks to integrate information from different fields-of-views, thus may
enhance low-level detail preservation of stylization that happens in high-level features and lead to more details in
the reconstructed image. Furthermore, An et al. replaced the skip connections in WCT? with Instance Normalized
Skip Links (INSL) as WCT? generally lost its ability to produce stylized images since the short circuit could block
the information stream flow into transfer module work at the bottleneck. INSL seems to alleviate the short circuit
phenomenon and strengthen the detail preservation and distortion elimination abilities of photorealistic style transfer
networks|[1]].

Chiu and Gurari introduced blockwise training to perform coarse-to-fine feature transformations in a single autoencoder
instead of the cascade of four autoencoders used in PhotoWCT. The course-to-fine feature transformations was also
an improvement from WCT? that had fine-to-course transformations which had weaker stylization strengths as the
fine-tune details may have been overshadowed later by coarser big-picture modifications. Secondly, skip connections of
high-frequency residuals were introduced in order to preserve image quality when applying the sequential coarse-to-fine
feature transformations. This preserved the advantages of WCT?’s better image reconstruction with less parameters [2]).

4.1 Our Method

Considering these approaches, we chose to make a model that combined the approaches in PhotoNas with that of
PhotoWCT?. Specifically, we added bottleneck feature aggregation, BFA, from PhotoNas to PhotoWCT? to help further
preserve details in the content image. We kept the high-frequency residuals from PhotoWCT? that allowed for better



| | L i

IC VGG 19 Concat Inverse VGG 19 Y

[ o

Figure 3: PhotoNetWCT?: Our autoencoder architecture with a BFA layer, ZCA transform (specific type of WCT
transform) and high frequency residual skip connections

feature reconstruction and preserved the information with less parameters than WCT?and kept blockwise training which
would also help minimize the feature reconstruction error. We ran our model against the baseline of WCT along with
PhotoWCT? with different content and style images to compare our results to.

5 Experiments

5.1 NST with Multi-Label Semantic Segmentation Weights

Initially we had a completely different approach and followed Gatys’ approach in "A Neural Algorithm of Artistic
Style" by using layers of the existing CNN as representations of the image’s style and content and then using gradient
descent from a white noise image to optimize the loss function.

Leotat(P; &%) =  Lcontent(p; %) + Lstyle(a; x)

Using VGG19 as our baseline model we applied Neural Style transfer to an interior room giving it a content and style
image. The results showed distortions and noise in the image as this approach leads to a more "artistic" result and
notably applied a very global style onto the image. We pivoted to trying to use pre segmented images however in this
case not only were existing noise artifacts not fixed but some new artifacts were introduced as well. In some cases, the
segmentation map was not precisely labeled leading to cases where errors in the segementation map would cause parts
of the image to be improperly styled. One example of these kinds of artifacts is the chandelier in Figure 4. Ultimately

Figure 4: segmented style transfer ~ Figure 5: segmentation map

these downsides motivated us to pivoting to working on the autoencoder approach which would likely yield more
photorealistic results and remove the potential problems of working with and needing segmentation maps.

5.2 Hyperparameters for the autoencoder method

The two main hyperparameters we tuned were the number of VGG layers we concatenated in our BFA, and the learning
rate. We had three VGG layers we could concatentate so to test we ran three separate models appending different
numbers of VGG layers and evaluated them against the image reconstruction loss and feature reconstruction loss terms
defined in the original PhotoWCT? paper. We also tried generating images for these different models to compare
outputs



Variation

Image Reconstruction Loss

Feature Reconstruction Loss

Total Loss

Concat Relul-1,Relu2-1,Relu3-1
Concat Relul-1,Relu2-1
Concat Relul-1

0.0012917289
0.0013787546
0.0018157327

0.16197614
0.18316413
0.18441695

0.1632679
0.1845428846
0.1862326827

Overall all variations led to similar image outputs with only slight differences in lighting and shadows. We did
find however that the image reconstruction loss and the feature reconstruction loss was the lowest for the variation
that con-catted all three possible VGG layers. As a result we chose this variation as the one we trained the final model on.

After we determined which concatenation of layers led to the best results, we tuned the learning rate of the
model by performing a log-scale random search to see which had the best loss convergence. We found that the learning
rate used by the original PhotoWCT? produced good results and that other variations did not lead to significantly faster
convergence. Ultimately we settled on a rate of le-4 to train our final model.

6 Results and Discussion

6.1 Image Outputs

Figure 6: Results with three concatenated ReLLu outputs in our BFA layer (see appendix for more results and larger
images

Compared to WCT, our results were significantly more realistic. As expected, the introduction of skip connections to the
decoder from PhotoWCT?’s approach and BFA from PhotoNet gave the decoder significantly more information to work
with over WCT and as a result, our method was able to reconstruct the image better and produce more photorealistic
results. However compared to PhotoWCT?, the approach that just added blockwise training with high frequency skip
connections, we found our approach was not significantly better. We suspect part of the reason why this was the case was
because PhotoWCT? already had skip connections from the VGG encoder to the decoder. While it was theorized that
feature aggregation might still be able to provide a unique benefit because it provided the information at the bottleneck
rather than sending it directly to specific layers, it seems that in practice adding BFA didn’t significantly increase
the amount of information that the decoder had when stylizing the image as the skip connections already provided
similar information. There were still some cases where our model was able to perform slightly better than PhotoWCT?.
Notably as seen in the appendix image of the red living room, our approach is sometimes more conservative in altering
parts of the image and actually correctly doesn’t choose to stylize parts of the image that PhotoWCT? would. These
cases are few and far between. Our method overall though did not perform any worse than PhotoWCT? in image output
in the situations tested, showing that BFA is fully compatible with the blockwise training approach.

6.2 Maetrics

Metric PhotoWCT?2 Ours
Image Reconstruction Loss 0.0006619 | 0.0012997
Feature Reconstruction Loss 0.0551108 0.1576392

We also compared our approach to PhotoWCT? with two metrics used in the original PhotoWCT? paper, image
reconstruction loss and feature reconstruction loss. The reconstruction loss is defined as the pixelwise L2 distance
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