
Human Marker Augmentation with Deep Learning using
Constraints

Aditya Agrawal
Department of Computer Science

Stanford University
adityaag@stanford.edu

Suguna Velury
Department of Electrical Engineering

Stanford University
sugunav@stanford.edu

Hermann Kumbong
Department of Computer Science

Stanford University
kumboh@stanford.edu

Abstract

A novel approach for measuring the dynamics of human motion presented is to use human markers
generated from pose estimation and augment them using LSTMs to get a larger set of markers.
Although this approach has produced good results, it still fails to generalize to other complex human
motions like nordic exercises and jumping. In our work, we address this by incorporating knowledge
of the physical constraints of human motion like invariant lengths, relative body part ratios, and
bounded joint angles into the LSTM model. Our approach yields better qualitative results than the
baseline for a subset of complex human motions.

1 Introduction

Measurement of joint angles and kinematics when analyzing human movement for biomechanical applications is
traditionally done via marker-based motion capture. However, this is resource intensive, time-consuming, and requires
expertise which has limited its usage to small-scale research studies. As an alternative to marker-based motion capture,
video pose detection estimates joint positions from videos. Our work focuses on an existing solution called OpenCap
[1]. In OpenCap, a pose detection algorithm like OpenPose is used to detect the pose from videos recorded from
multiple views after which triangulation is used to reconstruct the 3D trajectories of the identified video keypoints, and
then inverse kinematics is performed to estimate joint angles using a simulation tool like OpenSim [1]. Video pose
estimation however suffers from a lack of accuracy due to the sparse nature of the video keypoints identified by most
pose detection algorithms which leads to inaccurate inverse kinematics. In order to increase accuracy and robustness,
human body marker augmentation (i.e. generating new body markers) from video keypoints using deep learning has
been introduced in [1]. The idea of human body marker augmentation, as demonstrated in Figure 1, is to generate a

Figure 1: Using Anatomical Markers Generated From Video Keypoints to Estimate 3D kinematics

quantitatively enhanced set of anatomical markers from a reduced set of video keypoints. This augmentation is needed
to generate more accurate musculoskeletal simulations. One method of doing this is to use markers generated from a
pose estimation model (OpenPose) as inputs to an LSTM and generate a more comprehensive set of markers for the
simulation tool to work with [1].

CS230: Deep Learning, Fall 2022, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



While this method of training LSTMs to generate augmented markers has generated reasonable results, there are several
cases for which the model does not generalize well on out-of-distribution samples involving complex human motion [1].
Some examples of such activities involve jumping down from a raised platform and nordic exercises.

We seek to explore ways to remedy this issue by using deep learning integrated with human knowledge about the motion
of the human body. In particular we will be exploiting the observation that the human body has rigid bone segments and
can only exhibit a restricted range of motion [2].

2 Related work

Our work builds upon [1]. To understand more about the physical constraints of the human skeletal system and methods
of incorporating it in human pose estimation we refer to [2].

We aim to incorporate the physical constraints of the human body. There are two ways to approach this: using hard
constraints (constraints that "must" be satisfied at all times) or soft constraints (constraints that we "want" to be satisfied
as much as possible). [3] talks about how hard constraints do not offer any significant benefits over soft constraints
when trying to keep the operations computationally feasible. Hence we decided to move ahead with incorporating soft
constraints through penalty terms in the loss function.

[4] is related to our work as it aims to incorporate bone length invariance constraints. However, this paper aims to impose
these constraints to aid pose estimation and motion tracking of the markers, while we aim to generate better-augmented
markers for musculoskeletal analysis. [5] is similar to our work in the sense that it incorporates soft constraints through
penalties in the loss function in a different context and achieves reasonably positive results. However, the main objective
is to enable label-free learning as opposed to our case, which involves generating more robust markers. [6] incorporates
physics based constraints into the loss function to predict the trajectory of a pendulum. This paper uses an approach
similar to our work, which is incorporating an energy-conservation constraint in the loss term which yields better results
in terms of the predicted outputs.

Some other approaches include enforcing constraints within the architecture of the model using a constrained optimiza-
tion layer on top of the neural network [7] and adopting constraint-enforcing architecture design [8]. The approaches in
these papers differ from our implementation in the sense that they modify the architecture of the model but not add
any additional constraint terms to the loss function. [9] compares architecture constrained neural networks (ACNets)
and loss constrained neural networks (LCNets) and concludes that both are similar in terms of their performance with
ACNets performing only slightly better than LCNets. [10] talks about the benefits of incorporating constraints into the
neural network and concludes that this technique helps in generalization and faster training.

3 Dataset and Features

The data set consists of 972 hours of motion capture data, which was extracted from 10 open-source data sets consisting
of 336 subjects performing various activities like walking, running, squatting, cutting, and jumping. In the interest of
time and efficiency, we will be using only one of the ten data sets, consisting of about 17 hrs of motion capture data.
The data is stored as 121555-time sequences of length 0.5s. Each 0.5s sequence consists of 30 frames (i.e. 30 sets of
input video key points and output anatomical markers). A set of input video key points consists of 20 body markers
each represented as a set of normalized 3D coordinates relative to the hip bone of the subject (refer Figure 1). A set
of output anatomical markers on the other hand consists of 43 body markers each represented as a set of normalized
3D coordinates as well (refer Figure 1). We intend to use 80% of the data for training, 10% for testing, and 10% for
validation. Moreover, in order to encourage generalization, the data set will be augmented by scaling and rotating the
input sequences. We also add slight gaussian noise into the input data to simulate real life measurement errors. There
also exists a small set of examples where the existing baseline models fail which will be reserved for testing. Two such
examples involve jumping from one platform to another and nordic exercises. Note that the smaller scale of our data set
and the small sequence length of 0.5s can potentially limit the performance of our model.

4 Methods

Expanding on the observations from Section 2, we sought to incorporate two biological facts into our models using
penalty terms: 1) The body consists of rigid bone segments whose shape is approximately preserved during motion,
and 2) The body can only exhibit a fixed range of angular motion. We translated these two facts into three kinds of
constraints: 1) Distances between output markers on the same segment should be conserved across time-steps, 2) Angles
formed by various predicted segments of body should be within the natural human ranges, 3) Distances between input

2



and output markers should be conserved across time-steps. In the following subsections we introduce the baseline loss
and our proposed soft penalty terms for each of the constraints respectively.

4.1 Baseline

The baseline loss function consists of a mean squared error term that is optimized. This loss function does not contain
any human knowledge regarding the physical constraints of the human body. The equation of the cost function for the
baseline is as follows:

1

3MN

NX
i=1

MX
j=1

(ky(i;j) � ŷ(i;j)k2
2) (1)

4.2 Output Length Constrained (OLC) Model

As part of our first iteration of improvement, we decided to incorporate the invariance of human bone lengths into
the LSTM model [4]. This was done by modifying the original cost function to add a penalty term to incentivize the
model to conserve the distance between pairs of markers lying on the same bone segment across various time steps.
Formally, given the true coordinates of M output markers across N time steps (denoted y(i;j) (i 2 [N ] and j 2 [M ])),
corresponding predicted co-ordinates ŷ(i;j) and a set of pairs of marker indices representing a pair of output markers to
be constrained (denoted C, where (j; k) 2 C () output marker j and output marker k are on the same segment), our
proposed OLC penalty term is as follows (where �1 is a scaling hyper-parameter that needs to be tuned):

�1

N�1X
i=1

X
(j;k)2C

�
kŷ(i+1;j) � ŷ(i+1;k)k2

2 � kŷ(i;j) � ŷ(i;k)k2
2

�2

(2)

4.3 Output Angular Constrained (OAC) Model

In our second iteration of improvement, we decided to incorporate the limitations in the range of motion of human
joints into the LSTM model. This was implemented by adding a constraint term that penalizes the loss function if the
angle between two rigid segments in the human body goes beyond its physical limits. To implement these constraints
we first compute the centroid of the augmented markers on each segment/joint. We use the centroid of the joint between
two bones/segments as the reference to generate two segment vectors and calculate the cosine between these vectors.
After computing their deviation from the expected min cosine cosmin and max cosine cosmax of the ranges allowed by
the human body, we use a relu function to penalize the loss term if the cosine between the segments is out of range.
Mathematically, let us define Cs1, Cs2 and Cref as the centroids of the output markers on segment1, segment2 and the
reference respectively. Considering we have A angular constraints and N time steps, the angular constraints can be
described as below (where �2 and �3 are scaling hyperparameters that need to be tuned)

�2

AX
a=1

NX
i=1

relu(cos((Cs1;a;i � Cref;a;i); (Cs2;a;i � Cref;a;i))� (cosmin;a))+

�3

AX
a=1

NX
i=1

relu((cosmax;a)� (cos((Cs1;a;i � Cref;a;i); (Cs2;a;i � Cref;a;i))))

(3)

For a given angular constraint lets say segment K has jKj markers (each marker containing 3 dimensions x,y,z). The
centroid of this segment CsK is calculated as

CsK =
1

jKj

jKjX
i=1

�
ŷ(i)

x ; ŷ(i)
y ; ŷ(i)

z

�
(4)

The cosine between the segment vectors V1 and V2 is calculated as

cos(V 1; V 2) =
V 1 � V 2

kV 1kkV 2k
(5)

4.4 Input Output Length Constrained (IOC) Model

In the third iteration of our improvement, we decided to incorporate constraints between the input and output markers.
The motivation behind this idea is that if the input markers generated by OpenPose are consistent with the actual motion,

3



then we can enforce the notion of invariance of human bone lengths [4] by imposing constraints on distances between
input and output markers on the same bone segment.

Similar to the OLC model, to implement input-output marker constraints, we constrained the output markers from each
segments with the input markers from the same segment i.e. we incentivize the model to preserve distances between
input and output markers on the same segment across time steps. Formally, given the coordinates of L input markers
and the predicted coordinates of M output markers across N time steps (denoted x(i;j) and ŷ(i;k) respectively (where
i 2 [N ], j 2 [L], k 2 [M ])), and a set of pairs of marker indices representing a pair of output markers to be constrained
(denoted C, where (j; k) 2 C () input marker j and output marker k are on the same segment), our proposed IOC
penalty term is as follows (where �4 is a scaling hyper-parameter which needs to be tuned):

�4

N�1X
i=1

X
(j;k)2C

�
kx(i+1;j) � ŷ(i+1;k)k2

2 � kx(i;j) � ŷ(i;k)k2
2

�2

(6)

5 Experiments and Results

5.1 Baseline

For the baseline model, emulating [1], we built and trained a uni-directional LSTM [11] with 96 hidden units, 2 hidden
layers, a learning rate of 5e-05, a batch size of 64 and using mean squared error between the true and predicted output
markers as the loss. Additionally, to prevent overfitting, the training method utilized early stopping [12] with a patience
of three on the validation loss. Note that the hyper-parameters were chosen as per [1].

5.2 Models, Hyperparameter Tuning & Evaluation

Besides the baseline we decided to train one best model for each type of penalty term, so that we could investigate
their individual impacts independently. We performed hyper-parameter tuning on the learning rate and the scaling
parameters �1, �2, �3, and �4 for the output length constraint term, max angular constraint term, min angular constraint
term, and the input-output constraint term respectively. Note that we decided against tuning model parameters such as
the number of hidden units, number of layers, etc. and set them equal to the baseline, to isolate the effect of the loss
terms for fairer comparison between the different models. We used random sampling over the hyper-parameters (as
opposed to a grid search) to maximize the number of values considered for each hyper-parameter. We eventually used a
log-scale for sampling each hyper-parameter as each of the hyper-parameters have an exponential impact on the model.
We picked the best hyper-parameters based on which yielded which model yielded the highest evaluation score. To
evaluate the model we used the validation mean-squared-error, as we prefer models that have lower marker prediction
error. Due to the low penalty of OLC and OAC we additionally decided to combine the penalty terms for output length
constraints and output angular constraints to investigate their combined effect on the output marker performance. We
ran hyperparameter tuning on this as well.

The hyper-parameters obtained for our different experiements are summarized in section 5.3.

5.3 Quantitative Results

Model LR �1 �2 �3 �4 train_mse val_mse loss val loss
Baseline 5.00e-05 NA NA NA NA 2.78e-05 3.78e-05 2.78e-05 3.78e-05
OLC 4.22e-05 1.1187 NA NA NA 3.27e-05 3.90e-05 3.27e-05 3.91e-05
OAC 1.71e-05 NA 0.0527 0.0117 NA 6.92e-05 6.68e-05 7.03e-05 6.68e-05
OLC + OAC 4.38e-05 1.2492 0.9198 0.0438 NA 9.58e-05 7.15e-05 1.02e-04 7.56e-05
IOC 1.80e-05 NA NA NA 0.01 0.003 0.0027 0.0223 0.0202

Table 1: Summary of optimal hyperparameters, loss and evaluation metrics (mse) for each trained model

As expected for each model the validation loss is greater than the validation mean-squared error. This is due to the extra
non-negative penalty terms in the loss function. One observation from the hyper-parameters is that the total loss has
different proportions of contributions from mean-squared error loss term and the penalty terms. For instance the penalty
term contributes to 1% of the total loss in the OLC case while the penalty term contributes to 85% of the total loss in the
IOC case. This indicates that certain constraint violations (like IOC) have greater influence on the overall performance
of the optimal model. Note that the training curves were excluded as they did not carry any relevant insights (refer to
the repository for some samples).

4



https://github.com/Kumbong/cs230-project

	Introduction
	Related work
	Dataset and Features
	 Methods 
	Baseline
	Output Length Constrained (OLC) Model
	Output Angular Constrained (OAC) Model
	Input Output Length Constrained (IOC) Model

	Experiments and Results
	Baseline
	Models, Hyperparameter Tuning & Evaluation
	Quantitative Results
	Qualitative Results

	Conclusion & Future Work 
	Contributions

