
Beatomizer: Using Deep Learning to Turn Songs into

Satisfying Visualizations

Jack Michaels
jackfm@stanford.edu

December 2022

1 Introduction

1.1 Description

We enjoy listening to songs in the everyday life as frequently if not more frequent than we eat. It is
ingrained within us to automatically put on study music while working or listen to an exercise playlist at
the gym. While we love to discover and digest new songs on the daily, we hardly question the medium
through which we consume said content. Henceforce, Beatomizer was born to enhance our consumption
of music. Beatomizer is a deep learning model which takes in audio and outputs a visualizing satisfying
light pattern in RGB. Such a model has the immediately obvious applications in clubs or with DJs, yet it
could also enhance any audio experience across the board. By pairing the RGB output from Beatomizer
with venue lights, room lights, or any visual application you can fully immerse yourself in the music.

1.2 Challenges

Creating a visually satisfying light show is challenging for a variety of reasons. The key word being
satisfying, artificial intelligence is known to lack creativity and thus will display loss minimizing, yet
aesthetically boring visualizations. The sheer size of the output space is massive, allowing the algorithm
to hide behind loss minimization without creating anything solidly representative of the inputted song.
This can be avoided through adversarial networks like GANs [1], yet that is above the scope of this project.
Furthermore, the dataset requires heavy preprocessing in order to link frames to their corresponding audio
segments. This is compounded by the fact that most videos have different frame rates, all of which must
be normalized to the same value. For Beatomizer, an ideal frame rate of 60 fps was chosen. Finally, due
to the high complexity associated with RNN models and the large input and output space of the model,
running the attention model requires significant computational resources.

Figure 1: We can see some of the complexities associated with upscaling frame rate above. To keep time,
we have to determine which frames must be duplicated and which mustn’t be. We do so by decomposing
into cycles, analogous to a Fourier Transform.

1.3 Related Work

Beatomizer can be considered a machine translation problem except instead of taking word embeddings
and mapping them to one hot word vectors, we take slices of the audio and map them to RGB values,
effectively ”translating” audio into video. Machine translation between languages has been well docu-
mented [2] [3] [4] with sequential models as the primary candidate for results. Specifically, Beatomizer
follows the attention model architecture posed in [2] due to the high time dependency of audio and visual
data. SUFFERED FROM VANISHING GRADIENT

1




