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Abstract

Embeddings such as BERT represent syntactic infor-
mation in a vector space, and are increasingly used in
unsupervised keyphrase extraction. A previous paper
used document-phrase similarity drawn from the em-
bedding space of BERT and built a graph structure
considering the positions of phrases in documents to
rank candidate phrases by relevance. We extend their
method by considering information from other docu-
ments in the corpus, and introduce a new keyphrase
extraction algorithm, CorpusRank.

1 Introduction

Keyphrase extraction selects and ranks important
phrases from the body of a document that encap-
sulate topics of the document itself (Turney, 2000).
Keyphrases are used for a variety of downstream tasks
such as query expansion and document classification
(Papagiannopoulou and Tsoumakas, 2020).

A vast range of methods exist. Supervised keyphrase
extraction algorithms can attain high accuracies, while
unsupervised keyphrase extraction is more robust,
domain-independent, and does not require labelled
training data. Examples from the main categories of
unsupervised keyphrase extraction are explored and
combined in this paper: statistics-based (tf—idf), graph-
based (the PageRank algorithm), embedding-based
(BERT), and language model-based (n-gram) methods.

Embeddings such as GloVe (Pennington et al.,
2014) and BERT (Devlin et al., 2019) represent words
in a multi-dimensional embedding space. In particular,
in BERT, a pre-trained model based on transformer ar-
chitectures, geometry is imbued with syntactic meaning,
such that “distance encodes semantic similarity, while
certain directions correspond to polarities” (Coenen
et al., 2019).

(Liang et al., 2021) constructs graph-based ranking
for keyphrase extraction, working in the embedding
space of BERT. They consider two forms of context:
global context (document-phrase similarity), and local

context (position of phrases in each document).

We extend their method (which we refer to as
UKERank) in various directions. First, we consider
the amenability of the keyphrase graph constructed to
ranking using the PageRank algorithm (BERTRank).
Next, we examine the effect of neighbouring documents
(corpus context), using tf—idf, n-gram language
models, and k-document centrality. Lastly, syntactic
heuristics is explored as a complement to local context.

The aggregate of these models was then run on two
datasets, DUC2001 and SemEval2010, and hyperpa-
rameter testing performed to identify the most suitable
models for each dataset. We call our combined model
CorpusRank.

Figure 1: Tokenization converts words into vectors (tokens)
in an embedding space (flat sheet); the mean of these tokens is
the document vector ⋆. Considering only global context (red
circle) in keyphrase extraction only returns candidate phrases

adjacent to the document vector, while considering local
context now returns keyphrases representative of topics
in the document (black circles). We extend this to consider
adjacent documents (multiple sheets); that is, corpus context.
Figure adapted from (Liang et al., 2021).



2 Approach

Our initial steps follow (Liang et al., 2021). We tokenize
each document to produce word tokens {ti}, and use
BERT to obtain their vector representations {Hi}. We
retrieve candidate phrases {KPi} containing at least one
noun possibly preceded by adjective(s), with vector rep-
resentations V = {HKPi} taken to be averages of their
constituent word tokens. MaxPooling all tokens within a
document produces the document vector representation
HD containing its global semantic information.

{ti} {Hi} HD

V = {HKPi}

BERT MaxPool

average

2.1 Local and global contexts (UKERank)

(Liang et al., 2021) attributed a global relevance score Γ
to each phrase KPi based on phrase-document similarity.

Γ(HKPi) =
1

∥HD −HKPi∥1
(1)

A graph G = (V,E) was constructed for each docu-
ment, with vertices V = {HKPi} (candidate phrases)
and a set of edges E = {eij}, eij = HKPi ·HKPj con-
necting each pair (i, j) of vertices. They implemented
boundary-aware centrality to bias scores in favor of
phrases appearing near the start and end of documents.
For hyper-parameters (α, β, λ), define boundary func-
tion db(i) = min[i, α(n − 1)] for the ith phrase, and
threshold θ = β[max(eij)−min(eij)]. (Refer to their
original paper for heuristic justifications.) Compute:

Λ(HKPi) =

|V |∑
db(i)<db(j)

max(eij , θ) + λ

|V |∑
db(i)≥db(j)

max(eij , θ) (2)

p̂(KPi) = ep(KPi)
/ |V |∑

k=1

ep(KPk) (3)

where p(KPi) = 1/Pi, and Pi is the position of the first
appearance of the ith phrase. Local salience of each
phrase was defined

Λ̂(HKPi) = p̂(KPi) Λ(HKPi) (4)

and the final score S of each phrase was taken to be
the product of global relevance Γ and local salience
Λ̂. (Liang et al., 2021) used the final score to rank all
candidate phrases and extract keyphrases. We call their
model UKERank.

S(HKPi) = Γ(HKPi) Λ̂(HKPi) (5)

2.2 Graph-based ranking (BERTRank)
Having constructed a graph G of candidate phrases with
edge weights eij computed from syntactic similarities
in the embedding space of BERT, we posit an alterna-
tive ranking system following the famous algorithm by
(Page et al., 1999). Define a similarity matrix Mij = eij ,
M ∈ R|V |×|V |, and take its row-wise normalized form

M̂ij = Mij

/ |V |∑
j=1

Mij (6)

The vectorized saliency score ξ⃗ ∈ R|V | for all phrases
can then be expressed as a self-consistent system,

ξ⃗ = νM̂Tξ⃗ +
1− ν

|V |
ϵ⃗ (7)

where ν is a damping hyper-parameter (conventionally
ν ∼ 0.85), and ϵ⃗ ∈ R|V | a vector of 1’s. The transition
matrix (in a Markovian sense)

T = νM̂T +
1− ν

|V |
(⃗ϵ⊗ ϵ⃗) (8)

has a principal eigenvector ξ⃗ (of unit eigenvalue) ob-
tained by the power method, recursively applying T :

lim
n→∞

T n
(
ϵ⃗/|V |

)
= ξ⃗ (9)

Saliency score for BERTRank Ξ(HKPi) = ξi obtained
for each candidate phrase in a document is completely
independent of UKERank.

2.3 Corpus context
We now consider various corpus scores. These identify
keyphrases which are important in a document, but less
so in other documents in the set (corpus context).

2.3.1 tf—idf
Term frequency—inverse document frequency (tf—idf)
is a heuristic (Spärck-Jones, 1972) that calculates the
“inverse proportion of the frequency of a word in a par-
ticular document to the percentage of documents the
word appears in” (Ramos, 2003) as a measure of its rel-
evance in a document. We use sklearn to implement
these equations for word wi in a document Dj :

tf—idf(wi, Dj) = tf(wi, Dj) · idf(wi)

idf(wi) = log

(
N

df(wi)

)
+ 1

(10)

where term frequency tf is the raw count of a word’s
appearance in a document, and document frequency df
counts the fraction of N documents in the entire corpus
containing the word wi. The average of tf—idf scores
of words {wj} in a candidate phrase KPi constitutes its
corresponding corpus score, Ktf(HKPi).



2.3.2 Pointwise Kullback—Leibler divergence
Kullback-Leibler (KL) divergence measures “the ineffi-
ciency of assuming that a distribution is q when the true
distribution is p” (Cover and Thomas, 2005). It belongs
to the class of f -divergences, which are information-
monotonic in that the divergence measure does not in-
crease when information is coarse-grained (Amari and
Cichocki, 2010). Define KL divergence D as a sum
over pointwise KL divergences δx:

D(p∥q) =
∑
x

p(x) log
p(x)

q(x)︸ ︷︷ ︸
δx(p∥q)

(11)

Consider n-gram language models. For a sequence of
n words w = w1w2 . . . wk, the probability of a word
appearing the sequence under a n-gram language model
is conditioned on the previous n− 1 words (Chen and
Goodman, 1999), such that the probability of the se-
quence itself is

LMn(w) = p(w1) p(w2|w1) p(w3|w1w2) . . .

· p(wn|w1w2 . . . wn−1)

=

n∏
j=1

p(wj |w1w2 . . . wj−1)

(12)

Probabilities for bigram models can be expressed as a
function of counts, c:

p(wi|wi−1) = c(wi−1wi)
/∑

wj

c(wj−1wj) (13)

(Tomokiyo and Hurst, 2003) define two quantities,
phraseness φp, which measures the loss of informa-
tion under the assumption of word independence (using
the unigram rather than n-gram model), and informative-
ness φi, the loss of information when the probability of
a phrase’s occurrence is considered in the corpus context
c (set of all documents) rather than a single document d.

φp = δw(LM
n
d∥LM1

d)

φi = δw(LM
1
d∥LM1

c)
(14)

We combine the scores linearly to obtain KL score Kkl

for a candidate phrase.

Kkl(HKPi) = φp + φi (15)

2.3.3 k-document centrality
We may alternatively limit our corpus context to the k
semantically nearest documents, as measured by:

Sc(H
(i)
D , H

(j)
D ) =

H
(i)
D ·H(j)

D

∥H(i)
D ∥2 ∥H(j)

D ∥2
(16)

(Wan and Xiao, 2008) considered a group of nearest
documents in their ranking algorithm, ExpandRank. We
apply this to modify the earlier measure of local salience
(Liang et al., 2021) to sum over k nearest documents,
weighted by cosine similarity.

Λk(HKPi) =

k∑
l=0

Sc(H
(0)
D , H

(l)
D )

|V |∑
db(i)<db(j)

max(eij , θ)

+ λ

k∑
l=0

Sc(H
(0)
D , H

(l)
D )

|V |∑
db(i)≥db(j)

max(eij , θ)

(17)

In an analogous manner, a final score Sk was assigned to
each candidate phrase KPi, now accounting for global,
local, and k-document contexts.

Sk(HKPi) = Γ(HKPi) p̂(KPi) Λk(HKPi) (18)

For k = 0, this reduces to the score S of UKERank
(Liang et al., 2021).

The new embeddings resulted in slightly poorer
performance on each of the three metrics. This result
seems to disprove our hypothesis that improved
performance on Masked Language Modeling would
also result in improved token embeddings. Given that
these token embeddings were used for phrase and
document embeddings in particular, the disconnect
between training task and use-case likely caused our
model to be weaker.

2.4 Syntactic heuristics
2.4.1 Score
In the process of determining which methods would al-
low us to select for the most representative keyphrases,
we started off with multiple hypotheses about which
linguistic features are most highly correlated with the
best keyphrases of a document. We refer to (Barker and
Cornacchia, 2000) for their use of noun phrase heads
to extract keyphrases as the basis for using linguistic
features in unsupervised keyphrase extraction. Of our
several hypotheses, we settled on testing three in partic-
ular, and theorized that candidate phrases which are

1. the noun phrase complement of a preposition, or
2. the subject noun phrase of a sentence, or
3. the object noun phrase of a sentence

would more closely correlate to golden keyphrases.

We represented these binary linguistic features in our
model by first gathering three separate lists of candidate



phrases that met each of the respective criteria above.

We calculate a syntax score Σφ for each feature φ

Σφ(HKPi) = 1 + βpφ (19)

where pφ ∈ {0, 1} is determined by whether the can-
didate phrase meets one of the three criteria: φ ∈
{prepcomp, subject, object}.

2.4.2 Preliminary Findings
In preliminary experiments, we calculated a separate
syntax score for each feature rather than aggregating
each feature into our final syntax. We found that only
the score

Π(HKPi) ≡ Σprepcomp(HKPi) = 1+βpprepcomp (20)

contributed positively to our results while the scores
representing other linguistic features had a negligible or
negative impact on our results.

In our final experiments, we only evaluated whether
a candidate phrase was the complement of a preposition
to the exclusion of other features. Therefore, we declare
the score listed above to be the preposition score, Π
and we only use this score in the evaluation of our final
results.

2.5 Evaluation metrics

We use the evaluation metrics highlighted in (Liang
et al., 2021), following the common practice of evalu-
ating performance in terms of f-measure at the top N
keyphrases (F1@N), with stemming applied to candi-
date phrases as well as the golden key phrases. We re-
port F1@5, F1@10, and F1@15 for each of the datasets
that we use. (Naseem et al., 2021)

3 Dataset

We evaluate our model against two datasets, DUC2001
and SemEval2010. DUC2001 contains 308 long-length
news articles with their corresponding gold-truth key
phrases, which were manually labeled as the most
significant adjective/noun phrases within the document.
SemEval2010 is a similarly labeled data-set containing
500 full-length ACM papers and their respective
labeled keyphrases. These two data-sets provide a
strong range of testing capacity due to their diversity of
topics. Additionally, while news articles tend to have
more informal language closer to natural speech, ACM
papers are more formal and introduce novel topics into
the general vocabulary. These two complementing
datasets provide a robust approximation to the true text
population. It is important to note that the average
length of texts in DUC2001 and SemEval2010 are 847

and 1588 words respectively.

While SemEval2010 proves to be the more difficult
of the two benchmarks, given its lower F1 Score at the
previous state of the art. We find that that the percent-
age of improvement on SemEval2010 is notably higher
than the percentage of improvement on DUC2010. This
leads us to believe that our model performs better the
longer a given document. Improved performance on
longer documents is consistent with our assumptions
given our robust modeling of candidate phrase position
as well as position relative to other candidate phrases.
With more information, our model has stronger predic-
tive capabilities.

4 Neural networks and language models

The strength of our model is highly correlated to
the strength of our token embeddings. Candidate
phrase embeddings are determined by averaging
its corresponding token embeddings. Document
embeddings are created by Maxpooling the phrase
embeddings Hi. Therefore, we attempted to improve
the BERT model by continued training of BERT on
domain-specific data. (Gururangan et al., 2020) showed
that continued training on domain specific data showed
improved accuracy on Masked Language Modeling
tasks relevant to that domain. Since the BERT model
previously in use also was pre-trained via the Masked
Language Modeling Task, our hypothesis was that this
improved accuracy would extend to token embeddings.

We initialized our model using the bert-base-uncased
(Devlin et al., 2019) model. The model was trained
using approximately 18,000 sentences from the CC-
NEWS (Hamborg et al., 2017) dataset that was scraped
via the news-please crawler. This dataset contains
708241 English language news articles published be-
tween Jan 2017 and December 2019. To create our train-
ing set, we masked 15 percent of the tokens contained in
each of our 18,000 sentences. We then trained BERT on
dataset with a batch size of 4 for 4 epochs. Embeddings
were obtained using the same conventions as in (Liang
et al., 2021). The candidate phrase embeddings were
taken from the average of its token embeddings, and the
document embeddings were obtained by MaxPooling
its corresponding phrase embeddings.

4.1 Domain-Specific Results

Since this model was trained specifically on a news
related domain, we calculate the F1-score at 5, 10, and
15 to compare to that of the off-the-shelf BERT model.
The scores can be found in the Results section.



Models DUC2001 SemEval2010
F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

TF-IDF 9.21 10.63 11.06 2.81 3.48 3.91
YAKE 12.27 14.37 14.76 11.76 14.4 15.19

TextRank 11.80 18.28 20.22 3.80 5.38 7.65
UKERank 28.62 35.52 36.29 13.02 19.35 21.72
Our Model 33.10 38.88 39.97 17.40 22.60 25.98

Table 1: Comparison of our model with other baselines.

Models DUC2001 SemEval2010
F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

UKERank 28.62 35.52 36.29 13.02 19.35 21.72
Our Model 33.10 38.88 39.97 17.40 22.60 25.98

Our Model - DUC 34.80 40.24 40.86 14.17 21.56 25.04
Our Model - SemEval 28.73 35.94 38.17 20.26 25.25 27.60

Table 2: Our model fine-tuned to each Dataset
DUC: Hyperparameters are the same, k = 20
SemEval: k = 1, Hyperparameters = [.75, .2, .03, .95, 1]

5 Results

5.1 Combined Models
To evaluate our model, we ranked all of our candidate
keyphrases using the total score as shown previously.
Surprisingly, we found that k = 1 for k-document
centrality provided the best generalization between the
datasets. Given the joint use of multiple heuristics and
models our final ranking score T is tuned by 5 hyper-
parameters [a, b, c, d, e].

T(HKPi) = p̂(KPi) ·K2
kl(HKPi) ·Kb

tf (HKPi(
1 + cΠ(HKPi)

)
·Ξd(HKPi) ·Σe

k(HKPi)

(21)

To determine these hyper-parameters, we took 10,000
samples, randomly selecting a value between 0 and 1
for each value with one exception. For hyper param-
eter c, we selected random values between −0.1 and
−.1. Our intuition here was that negative hyper parame-
ter c could model a negative correlation between gold
truth keyphrases and complements of prepositions. As
a result, we found the best values for the list of hyper
parameters to be [0.1, 0.2, 0.06, 0.9, 0.7]. In spite of the
robust syntactical and thematic difference between the
two corpuses, these values gave strong scores on both
DUC2001 and SemEval2010 proving the models poten-
tial at generalization. These hyper parameters represent
heavy dependency on the BERT Rank and the original
UKERank model.

5.2 Result Metrics and Domain-tuned
Experiments

As you can see in Table 1, our model outperforms
the previous state of the art benchmarks in all metrics

on both DUC2001 and SemEval2010 making our
model CorpusRank the current- state of the art. In
development, we found that just applying the TF-IDF
score to the original UKERank model gave already
significant improvements over the previous state of the
art. This version of the model runs very quickly and
still provides results close to the state of the art.

We also found that our combination of models
performs exceptionally well if the hyper parameters
are fine-tuned to the individual datasets. We can see
the results of this in Table 2. We found that when k is
increased to 20 we get meaningful performance boost
on DUC2001. This means a node graph is created
with edges between every candidate phrase in a given
document and every candidate phrase in its k=20
nearest documents. Such results are consistent with
intuition given that the corpus represents news articles
and news articles often reveal inner importance relative
to one another.

On SemEval2010, the Kl divergence model and
BERTRank model played strong roles, to greatly
increase the F1@5 score. We see over a one third
increase in the score. Surprisingly, high k values greatly
hurt the score as can be noted on CorpusRank-DUC.
Given that SemEval2010 is a corpus of scientific papers
with an average length of 1600 words, the k-document
centrality method seems to hurt the most prominent
keyphrases Whereas the surprise factor of a keyphrase
along with its internal relationship in the single
document weight its ranking. This can be shown by the
new hyperparameters for this model [.75, .2, .03, .95, 1].



Our model can be generalized using the primary hy-
per parameters reported to tackle a general domain space
of documents. It can also be fine tuned to a dataset to
see great performance boost depending on the structure
of the corpus.

6 Future work

In this paper, we utilize BERT embeddings. The BERT
embeddings are used to model similarity between two
candidate phrases, a candidate phrase and document,
and two documents. Given its recurrent use in our
model, further development on this embedding space
will greatly improve its strength. In future work, we
will focus on creating more specialized representations
for documents and candidate phrases. One avenue to
achieve this would be to fine-tune a BERT model on a
key-phrase specific task or to train even larger domain-
specific models.

References
Shun-ichi Amari and Andrzej Cichocki. 2010. Information

geometry of divergence functions. Bulletin of the Polish
Academy of Sciences, 58.

Ken Barker and Nadia Cornacchia. 2000. Using noun phrase
heads to extract document keyphrases. In Advances in
Artificial Intelligence, pages 40–52, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Stanley F. Chen and Joshua Goodman. 1999. An empirical
study of smoothing techniques for language modeling.
Computer Speech Language, 13(4):359–394.

Andy Coenen, Emily Reif, Ann Yuan, Been Kim, Adam
Pearce, Fernanda B. Viégas, and Martin Wattenberg. 2019.
Visualizing and measuring the geometry of BERT. CoRR,
abs/1906.02715.

Thomas Cover and Joy Thomas. 2005. Elements of Informa-
tion Theory. John Wiley Sons, Ltd.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. BERT: Pre-training of deep bidirectional
transformers for language understanding. pages 4171–
4186. Association for Computational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta,
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