
Re-L Catan: Evaluation of Deep Reinforcement Learning for
Resource Management Under Competitive and Uncertain

Environments

Chris C. Kim
Department of Computer Science

Stanford University
chankyo@stanford.edu

Aaron Y. Li
Department of Computer Science

Stanford University
aaronli9@stanford.edu

1 Introduction

In recent years, Reinforcement Learning (RL) has been increasing in popularity for their novel ability to solve large complex
problems with relatively limited information. As a variation of supervised learning, RL architectures are unique models, or
Agents, that learn to evaluate a given State (s) of its provided Environment and create decisions, or Actions (a), to solve problems
by continuously receiving reward and penalty scores for each Action incurred in the Environment. Often modelled as a Markov
Decision Process (MDP), RL models does not require information on previous States to decide on an action, which is quite
practical for responding to unfamiliar environments and situations. In particular, RL models are highly interesting because
they are powerful in solving dynamic problems with relatively low pre-existing knowledge of the environment. As such, pop-
ular applications of RL are found in designing artificial players that can outperform humans in games, such as Poker and GO [1, 7].

Following similar inspiration, our team seeks to design a deep neural network-based RL model that can outperform human
performance in the popular board game Settlers of Catan. While RL models are not fundamentally required to implement a
neural network architecture, many real-world problems often contain complex state spaces that result in large feature vectors that
render traditional RL methods to be computationally expensive. As such, most modern RL architectures now implement a form
of neural network model in addition to the basic RL framework, known as Deep Reinforcement Learning, to generate highly
predictive models within computationally reasonable parameters.

In regards to the game, Catan is a resource driven game in which players roll dice to collect resources, trade materials with other
players, and compete to be the first to build the most structures. Our group chose to explore Catan because its fundamental
gameplay is unique compared to other conventional strategy games. In traditional turn-based games, such as Chess and Go, the
game rotates actions between players who make independent decisions unaffected by other players within the same turn. In
Catan, however, a player’s turn is highly guided by both randomness and the whims of other players, who can freely intervene in
the current player’s turn through the game’s trade mechanism. As such, this infusion of randomness, cross-player intervention,
and traditional independent decision-making promotes Catan as a uniquely complex and interesting game to win. In particular,
our group believes that developing a viable Deep RL model to play Catan will be a novel yet fascinating problem to evaluate
how machine learning models can perform relative to human players in loosely regulated game environments, such as trading or
bartering.

In this study, our group utilizes Deep RL, and specifically Deep Q-learning (DQN), as the primary neural network architecture,
as the game Catan itself is very dynamic turn-based game that requires relatively low prerequisite knowledge to perform well.
The input for our model is quite extensive and will include numerous features - including number of points per player, number of
resources for each player, number of buildings created by each player, current dice roll, availability of space on the game board,
number of special ability cards per player, etc. - that are extracted and compressed into a singular vector from a custom Catan
simulation API. Once extracted, this feature vector will be inserted through the Deep Q-Learning architecture to output the next
turn action the Agent should take - such as building structures, drawing ability cards, trading resources, etc.

CS230: Deep Learning, Autumn 2021, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



Figure 1: A graphical representation of the Agent-
Environment interaction in a Markov decision process
by the Agent.

Figure 2: A graphical representation of the Q-Learning
and Deep Q-Learning paradigm for each State-Action,
Q-Value and State, Q-Value Action pair respectively.

2 Related work

2.1 Q-Learning Algorithm

Q-Learning algorithms are the most popular and commonly used model for RL implementations. The algorithm employs the
Agent to interact with the Environment to learn the Q-values for each State-Action (s, a) pair [12]. These Q-values then determine
the optimal Action an Agent should take given a particular State. The primary advantage of Q-Learning is that the MDP property
allows the model to maximize the expected value of the total reward over all successive steps with only information on the
current State [3, 8]. A significant disadvantage of Q-Learning models is that the algorithm can become intractable due to the
high complexity of the targeted problem space. This results from the fact that traditional Q-Learning requires information on
all possible combinations of State-Action pairs and their associated Q-values in the designated Q-Table, which can prove to
be computationally expensive [3, 9]. For a high dimensional environment such as Catan, it would be less favorable to employ
traditional Q-Learning as the primary solution.

2.2 Deep Q-Learning

Deep Q-Learning models offer a robust solution to the intractability of the traditional Q-Learning algorithm by applying the
Q-Table paradigm onto a neural network model. In this version, the neural network maps the input State of the Environment
to each Action-Q-Value pairs [5]. Interestingly, this model is often used in conjunction with Experience Replay, or a second
DQN model, that acts as a set of memory weights and biases of previous episodes to help train the active model [6, 11, 13]. The
primary disadvantage of Deep Q-Learning is that the duration for training the model is often significantly longer than those
of tractable Q-Learning problems [9, 10]. For a complex problem space environment such as Catan, it is likely to take longer
duration for training iterations.

2.3 QSettlers

Previous research work with similar objectives was endeavored by the QSettlers team led by Peter McAughan in 2019. In
this work, the team attempted to similarly apply the DQN paradigm to develop an AI model to play and win Settlers of Catan.
Unfortunately, the team was unsuccessful at implementing a working DQN model for general gameplay, but was able to train
and develop a working DQN model specifically for the player trading mechanism of the game [2, 4]. Our team recognize this
previous group’s work as exceptionally useful for our purposes and seek to incorporate their described model as a module within
our proposed model for general gameplay.

2



Figure 3: Left: Snapshot of Colonist.io, an online website-based Catan API. Right: Snapshot of our team’s game engine of
Catan from scratch, with a customized GUI to help train the RL model. This represents one game Environment State.

2.4 Settlers of Catan Bot (CS 221 Autumn 2014)

Previous research work with similar objectives was also endeavored by Sierra Kaplan-Nelson and his team in 2014 for their CS
221 final project. Their work differs from ours in that Nelson primarily used a basic neural network to train their models whereas
our group intends to primarily use DQN models [14]. As such, it is unknown if their model is able to compare the expected
utility of available actions, like DQN, to decide on future actions. There are two strengths of this work that we applied to our
own project. First, Nelson’s team would replace the weights of the three underperforming models with the weights of the highest
performing model to improve training speed. Second, Nelson’s team applied heuristics to the gameplay of their Environment to
help reduce its dimensions and its complex problem space to help increase training time through [14].

3 Dataset and Features

Due to the Offline RL learning paradigm, our project requires our Agent to able to collect and store data on a previous turn
to train and to actively interact with the Catan game, or the environment [10]. To clarify, while the Agent does not require
information of a previous State for deciding an Action, but does require information on the previous State for network training.
At first, our team attempted to contact the developers of numerous popular online versions of Catan, such as Catan Universe and
Colonist.io, to perchance use their existing API for this project. Unfortunately, the developers of these third party APIs were
unwilling to share their source code nor had available labeled data for potential supervised fine-tuning. For this reason, our team
had to default to creating our own Catan game engine that would allow our model to directly interact with the environment as
well as cache datasets on the game state of previous turns (See Figure 3).

To train our Deep RL model, our team initializes four CPU players within our custom game engine that will each use our model
to generate a decision for their given turn. This will allow our team to collect four State data points within a given rotation; the
number of rotations depends on the number of turns it takes to win the game. In order to use the model, the CPU must generate a
feature vector containing target features from the current state of the game . Since our team is using a custom API, not much
pre-processing work is required and our engine contains a pre-built code to selectively include desired features - such as number
of players, number of resources per player, points per player, etc. - into a ready-to-use 1D input vector for our model. This
functionality is quite important, as highlighted in the Methodology section below, as our team decided to use multiple Deep
RL learning models that will each specialize in the distinct game phases of a player’s turn, which may require different feature
vectors that include specific variables while excluding others.

As a requisite of the RL learning paradigm, our algorithm will actively cache the previous game state vectors, weights, and biases.
This will also serve as a useful back-up dataset to retrain the model. On a final note, we would like to mention the possibility of
incorporating a Convolutional Neural Network (CNN) model to our current work due to the availability of a GUI in our game
engine. While we did not implement a CNN in this project, we believe that a CNN with the vectorized GUI could improve
performance.

3



Figure 4: Left: Training model for training the DQN Build
Network where initial game piece placements are made
using a basic heuristic model. Right: Training model for
training the DQN Placement Network in which the fully-
trained DQN Build Network is used to perform actions
based on placements made by the training model.

4 Methods

Q learning for placements requires us to have a known end state that we can assign a reward for, which means we need to know
whether a placement wins or loses upon being played. That required us to have a model that builds reasonably well during the
game. In order to have a model that builds reasonably well during the game, we needed a model that places reasonably. To
resolve that chicken and egg situation, we first implemented a more basic heuristic model for placement. This model included
a large expression, parts of which rewarded high production, parts of which rewarded resource diversity, and parts of which
rewarded coordination between synergistic resources (ex. wood + brick, ore + wheat, ore + wheat + sheep). Using that heuristic
placement, we were able to generate reasonable board states with which to start training a DQN for turn actions. For the turn
action DQN, we represented the input state as a feature vector of important numbers in the game, like different players’ victory
points and development cards remaining. We assigned rewards to different (old state, new state) pairs, so that every action had
some small positive or negative reward, and a winning state would get a large reward. We stored the most recent 500 of these
pairs into an experience replay buffer, so that our model could recall them for training. We then wanted to feed that result back
into an improved placement model, as we could now play a placement out to completion and therefore assign a placement a Q
value, but we didn’t have time to do so. (Refer to figure 4)

For this project, our team proposes to use the Deep Q-Learning algorithm as the framework for our learning models. Deep
Q-Learning is a variation of the Q-Learning algorithm that implements a deep neural network to reduce the computational stress
from high-dimensional problem states. In brief, Q-Learning is a simple algorithm that uses a Q-table to map an environment
state and the agent’s actions to the expected reward of the action given the state. Throughout the training process, the algorithm
attempts to learn the Q-value, or the maximum expected reward an agent can receive for an action given a state, for each action
and environment state, or exploration. After learning the Q-values, the agent at a given state maximizes the expected reward by
taking on the action with the highest reward, or exploitation [12].

The difference between Q-Learning and Deep Q-Learning is that while Q-Learning will require the agent to search through all
actions for a particular state and choose the best state and action pair, Deep Q-Learning will estimate the probability distribution
of all possible actions that the agent can make, similar to a softmax algorithm, to be more computationally efficient. Furthermore,
Deep Q-Learning has an onboard neural network, instead of a table, that will map the input game state to its corresponding action
and Q-value pair as the output. This is especially favorable for our project because the Catan game contains a large number of
features ranging from tiles, nodes, edges, development cards, resources, dice rolls, and more. As such, it is preferable to use
Deep Q-Learning over traditional RL methods. In our project, our team proposes a machine learning paradigm that consists of
multiple Deep Q-Learning architectures that will be specialized for specific phases of a player’s turn. For instance, a turn in
Catan can be theoretically split into multiple phases including Placement, Building, Trading, Development Card Usage, and
Theft. We chose this design because one phase of a player’s turn may require different types of variable information than another
phase of the turn. For example, initial placements of buildings may require information on specific resources on the board, but
stealing resources from another player will require more information on the other player’s hand rather than the board itself. Thus,
instead of using one Deep Q-Learning algorithm for the entirety of the game, we speculate that we will optimize performance by
using a conglomeration of multiple Deep Q-Learning networks that specialize in their specific phases. Furthermore, splitting into
multiple models allows each model to have smaller and more specific feature vectors for greater accuracy and faster computation.

4



Figure 5: The Bellman Equation describes the primary training strategy to update the DQN neural network weights

Model Win Percentage (%)
Basic Placement with DQN 32

Basic Placement with Random Legal Actions during Turn 18
Random Placement with DQN 10

Basic Placement with DQN, No Experience Memory 24
Basic Placement with DQN and Bad Trading 20

Basic Placement with DQN, No Dropout Regularization 18
Table 1: List of different learning architecture trained and evaluated based on game win percentage (%). Different learning
architectures vary in network models and hyperparameters

5 Results and Discussion

We decided to use Adam optimization to train the DQN. We also went with a 20 percent dropout regularization after each hidden
layer. That amount of dropout helped us prevent overfitting on the few thousand particular boards that our model looked at.

For our experience replay buffer batch size, we decided to use 500 (old state, new state) pairs (500 turns of gameplay) because
we wanted our memory to be reasonably wide in order to discourage correlation between turns that are close together (ie 1 or 2
orbits). 500 turns spans several games played on the same board, so it can cover many possible combinations of random dice
rolls and the resulting actions without causing too much memory overhead.

We had our model play 50 games against bots on colonist.io, and we were able to win 16 games, a 32 percent win rate, 7 percent
better than the expected win rate for a Catan game. Moreover, this is with a discontinued trading model, as the one we had
was giving too many key resources away in certain instances. With an improved trading model, the win rate can only go up, as
trading is almost always advantageous.

6 Conclusion/Future Work

Our current DQN for building performed well against bot players. The trading model often gives opponents too many useful
cards in exchange for accomplishing a small objective, likely because our current reward function mostly prioritizes the acting
player’s game state rather than it’s game state relative to the other players’. In the future, we would like to improve the way our
model evaluates other agents’ positions in the game, in order to improve the trading model. This would also open up interesting
possibilities for placements and other actions like deciding what to build and where. Further, we’d like to improve the quality of
the initial placement model and carry out better hyper-parameter tuning for our models across the board.

We would also like to address a few challenges we had during this project. We recognize that Deep Q Learning is excellent for
single agent environment problems, whereas the problem we are attempting to tackle is multi-agent environments with each
agent with different goals. Google’s DeepMind Alpha GO uses a CNN + MCTS approach instead of Deep Q-Learning for this
reason. We can take inspiration and do this to potentially improve our model performance [11].

7 Contributions

Each member of this team has made significant contributions to the overall project while also making specific contributions
towards particular sections of the project.

Chris Kim led the development of the team’s custom simulation API for Catan from scratch, assisted in hyperparam-
eter research and fine tuning, management of the group GitHub repository, and was the primary author of the final research
report.

Aaron Li led the development of the Deep Q-Learning and standard neural network models, code cleaning, and was
the primary author of the group’s video presentation.

5



References

[1] Anthony, T., Tian, Z., Barber, D. (2017). Thinking fast and slow with deep learning and tree search. arXiv preprint arXiv:1705.08439.

[2] Dabney, W., Rowland, M., Bellemare, M. G., Munos, R. (2018, April). Distributional reinforcement learning with quantile regression. In
Thirty-Second AAAI Conference on Artificial Intelligence.

[3] Jang, B., Kim, M., Harerimana, G., amp; Kim, J. W. (2019). Q-Learning Algorithms: A comprehensive classification and applications.
IEEE Access, 7, 133653–133667. https://doi.org/10.1109/access.2019.2941229

[4] McAughan P, Krishnakumar A, Hahn J, Kulkarni S. QSettlers: Deep Reinforcement Learning for Settlers of Catan, from
https://akrishna77.github.io/QSettlers/

[5] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wiestra, D., amp; Riedmiller, M. (2013). Playing Atari with Deep
Reinforcement Learning. NIPS.

[6] Nagabandi, A., Kahn, G., Fearing, R. S., Levine, S. (2018, May). Neural network dynamics for model-based deep reinforcement learning
with model-free fine-tuning. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 7559-7566). IEEE.

[7] Schaul, T., Quan, J., Antonoglou, I., Silver, D. (2015). Prioritized experience replay. arXiv preprint arXiv:1511.05952

[8] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam,
V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel,
T., amp; Hassabis, D. (2016). Mastering the game of go with deep neural networks and Tree Search. Nature, 529(7587), 484–489.
https://doi.org/10.1038/nature16961

[9] Stooke, A., Abbeel, P. (2018). Accelerated methods for deep reinforcement learning. arXiv preprint arXiv:1803.02811.

[10] Towards Data Science. (2018, August 5). Applications of reinforcement learning in Real World. Medium. Retrieved December 3, 2021,
from https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12.

[11] Tucker, G. (2020, August 20). Tackling open challenges in offline reinforcement learning. Google AI Blog. Retrieved December 3, 2021,
from https://ai.googleblog.com/2020/08/tackling-open-challenges-in-offline.html.

[12] Wang, M. (2021, October 3). Deep Q-learning tutorial: Mindqn. Medium. Retrieved December 3, 2021, from
https://towardsdatascience.com/deep-q-learning-tutorial-mindqn-2a4c855abffc.

[13] van Hasselt, H., Guez, A., Silver, D. (2016). Deep Reinforcement Learning with Double Q-Learning. Proceedings of the AAAI Conference
on Artificial Intelligence, 30(1). Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/10295

[14] Kaplan-Nelson, S., Leung, S., Troccoli, N., (2014) An AI Agent for Settlers of Catan
https://github.com/skleung/cs221/blob/master/progress.pdf

6


	Introduction
	Related work
	Q-Learning Algorithm
	Deep Q-Learning
	QSettlers
	Settlers of Catan Bot (CS 221 Autumn 2014)

	Dataset and Features
	 Methods 
	Results and Discussion
	Conclusion/Future Work 
	Contributions

