
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Real-time Water Consumption Prediction 
Value and Probabilistic Prediction 

Cao Jinpu 
Civil and Environmental Engineering Department  

jinpu@stanford.edu 

Abstract—Urban water supply service is one of the key 
functions of urban infrastructure. Accurate prediction of water 
consumption in the future is helpful to detect the abnormalities 
of water supply systems including pipe bursts in real-time, and 
effectively improve the economy and stability of the water 
supply system. Based on two water consumption dataset, the 
paper finds that Recurrent Neural Networks model represented 
by GRU model outperforms other artificial neural networks 
models when conducting the value prediction of water 
consumption. The root mean square error of GRU model is only 
80% of the basic model’s error. Besides, the paper develops a 
probabilistic prediction model of water consumption based on 
Deep Autoregression (DeepAR) model whose mean absolute 
percentage error on test set is only 6%. It can be used in the pipe 
bursts alarming. 

Keywords—water consumption, seq to seq, RNN, probabilistic 
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I. INTRODUCTION 

The urban water supply system is an important part of 
urban infrastructure. Water consumption has a certain periodic 
law. For example, more water is used in summer than in winter, 
and more water is used during the day than at night; however, 
it will also be affected by some other factors, such as holidays 
or the immigration of population. The water supply system 
needs to predict the change of water consumption in advance in 
order to provide users with stable water supply services. On the 
other hand, the water supply systems in many cities are old and 
prone to abnormal situations such as pipe bursts. If the 
reasonable range of water consumption in a period can be 
predicted in advance, once the tube burst occurs, it can be 
repaired as soon as possible. Therefore, accurate prediction of 
water consumption can improve the operation efficiency of 
urban water supply systems and reduce the operation cost. 

II. LITERATURE REVIEW 

The urban water consumption prediction is a critical 
problem and has a really practical impact. So, many researchers 
have explored some useful models in terms of the problem. 
Abdüsselam [1] presented a Takagi Sugeno (TS) fuzzy method 
for predicting future monthly water consumption values from 
three antecedent water consumption amounts. Hongyan [2] 
proposed a Markov modified autoregressive moving average 
(ARIMA) model to predict the future daily water consumption 
data according to the periodicity and randomness nature of the 
daily water consumption data. Compared to the traditional time 

series prediction model, these models can get better accuracy in 
general.  

With the development of artificial intelligence theory and 
computer hardware, more and more machine learning or deep 
learning techniques have been adapted into water consumption 
prediction. Altunkaynak [3] developed a  monthly water 
consumption prediction model based on artificial neural 
networks (ANNs), in combination with data preprocessing 
techniques (Discrete wavelet transform & multiplicative season 
algorithm). Al-Zahrani [4] constructed the combined technique 
of Artificial Neural Networks and time series models based on 
the available daily water consumption and climate data for 
predicting the future daily water demand for AI-Khobar city in 
the Kingdom of Saudi Arabia. Haytham [5] adapted the Deep 
Learning technique (deep convolutional neural network 
DeepCNNs) in the hydrology domain and better accuracy 
across three water stations compared to state-of-the-art models 
(Artificial Neural Networks, Support Vector Machines, 
Wavelet-ANNs, Wavelet-SVMs) used in the hydrology 
applications. 

Using recurrent neural networks to build sequence models 
has got great success in practical applications, such as time 
series prediction [6], natural language processing [7], image 
generation [8], audio recognition [9], video model [10].  
Bejarano [11] designed a smart water prediction system that 
predicts future hourly water consumption based on historical 
data and demonstrated that the Long Short Term Memory 
(LSTM) based deep Recurrent Neural Network (RNN) model 
is able to accurately predict future hourly water consumption in 
advance using just the last 24 hours of data at test time. The 
paper of Said [12] implied that LSTM can be implemented on 
a univariate water consumption time series prediction problem 
and can make decent predictions for water consumption time 
series.  

Compared to value prediction, probabilistic prediction is 
more practical in urban water consumption estimation problems. 
Cutore [13] proposed a probabilistic prediction of urban water 
consumption using the Shuffled Complex Evolution Metropolis 
algorithm. Hutton [14] presented a probabilistic methodology 
for quantifying, diagnosing, and reducing model structural and 
predictive errors in short-term water demand forecasting. 
Gagliardi [15] proposed a probabilistic short-term water 
demand forecasting model based on the Markov Chain. In the 
field of probabilistic prediction of water consumption, there is 
little research on the method of introducing deep learning, 



which has shown its strong power in the value prediction of 
water consumption.  

III. DATASET 

I worked as a research assistant in the past summer quarter 
and got the water consumption in two water stations in 
Shanghai, China. And also to consider more possible features, 
I crawled some data about climate, holidays, and environment 
from the website. 

A. Water Consumption Data 

There are two water consumption datasets. One is for 
Hanyang Water Station (HY), and another is for Wujing Water 
station (WJ). Figure 1 gives an intuition of what the data looks 
like. The data records two years’ water consumption, and the 
frequency of the data for each station is 1 minute. So, for each 
dataset includes (365 + 366) × 24 × 60 = 1,052,640 
records for each station. 

 
Figure 1. The water consumption of two stations (2019-2020) 

B. Other features 

Other possibly related features are collected to increase the 
accuracy of water consumption prediction. Four features are 
used in the paper. They are maximum temperature of the day, 
minimum temperature of the day, whether the day is weekend 
and whether the day is holiday. There are 365 + 366 = 731 
records in this dataset since only one record for every day. 

IV. APPROACH 

A. Preprocessing 

From Figure 1, we can see some preprocessing needs to be 
done. To clean the outliners, the water consumption is 
regrouped by day. The mean and standard are computed. 
Abnormal values are detected using the 3𝜎criterion (Fig.2.) and 
mean values are used instead. Fig.3. shows the results of data 
cleaning. 

 
Figure 2. Clean HY station data with the 3𝜎criterion  

 

 
Figure 3. The denoised water consumption of HY and WJ 

(2019-2020) 
For other features, the data needs to be expanded to match 

to the water consumption records. And for some special 
categorical variables, such as holidays, it is not informative 
enough to represent them as 0-1 variables. Because generally, 
the water consumption will increase before and after the festival, 
rather than only on the festival day. We use some special 
methods to make holidays be the continuous variable. (Fig.4.). 
In this figure, the holiday effect decays exponentially with the 
distance from the holiday.  

 
Figure 4. Continuous holiday variable  

B. Water Consumption Prediction (value) 

Considering the practicability of model, we hope that the 
model can predict the water consumption in the future. The daily 
water consumption is a vector of 24 × 60 = 1440 dimensions. 
According to the pre-test, considering the model accuracy and 
the time required for training, directly outputting the complete 
water consumption of one day is not the best choice. Here we 
resample the water consumption of one day with sampling 
frequency Δ௢௨௧௣௨௧ = 20 minutes. This means the output of the 
model is a vector with 1440/20 + 1 = 73 (including the end 
point) elements.   

The same resampling method can be used in the inputs. The 
same sampling frequency Δ௜௡௣௨௧ = 20 minutes is used for 
resampling. Actually, inputs can include water consumption 
data from several days ago. Here, to simplify, as the base model, 
only previous day’s data is used.  

 In order to get as many samples as possible, sliding 
window skill is used when extracting samples from dataset. Here, 
set the size of sliding window 𝑠 = 5 minutes, which means we 
extract one sample every 5 minutes. After using the sliding 
window skills to augment, we have enough data for training a 
deep learning model. But the start time of each sample is 
different. To solve this problem, the timestamps in every day of 



each sample are added as another inputs. Thus, after adding four 
other related features, the shape of the water consumption value 
prediction model’s input is (None, 73, 6), and the shape of the 
model’s output is (None, 73, 1). 

 With the above method, 209,949 samples are extracted 
from the dataset (in this part, only the data in HanYang Station 
is used for example). Split all samples into training set, 
development set and test set in a ratio of 9:1:1. It should be 
noted that here we need to split sequentially rather than 
randomly. Because this is a time series problem, samples are not 
independent between each other.  

Models 
The part refers to the official tutorials of time series forecast 

in TensorFlow [16].  Many models have been tried to do the 
regression work. The article only shows the six representative 
models and their prediction performance: 
·Model-1 is ‘Repeat model’, which is regarded as the base 
model. Since this task is to predict 1 day into the future, given 1 
day of the past, a simple approach is to repeat the previous day, 
assuming tomorrow will be similar.  
·Model-2 is ‘Dense’ model. The input matrix is flattened as a 
vector. Then 1 dense layer with ‘relu’ activation function and 1 
linear layer, which is equal to the dense layer with linear 
activation function, are stacked behind.  
·Model-3 is ‘CNN’ model. Here we use 1 dimensional 
convolutional neural network since time series data has only two 
dimensions. To match the size of CNN filter (filter_size = 5 in 
the paper), only last 5 rows of input are left. Then one linear 
layer is added for outputs. 
·Model-4 is ‘LSTM’ model. Only one layer LSTM is used here. 
One linear layer is added behind for outputs. Here LSTM model 
is just the simplest architecture, which predicts the entire out 
sequence in a single step.  
·Model-5 is ‘GRU’ model. GRU model is similar to the LSTM 
model. Both of them are advanced Recurrent Neurual Network. 
GRU model here is also the simplest architecture. 
·Model-6 is ‘BiLSTM model, which is a variate of LSTM. The 
model consists two LSTMs: one taking the input in a forward 
direction, and the other in a backwards direction. The model 
should be the most complex model with most parameters. 

 The above six models only include one special layer in 
order to compare their prediction ability under the same other 
conditions as far as possible. For the detailed architecture of 
each model, such as the hidden units of each layer, please refer 
to the appendix.  

Train models 
Since it is the regression problem, mean square error is 

choosed as the loss function. In the equation, 𝑁 is the number 
of samples, 𝑇 is the number of time steps each output vector.   
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Use mini batch gradient descent to train models, where the 
minimum batch size is 256. Use Adam optimizer with 0.01 
learning rate. Compile models in Keras and fit them. It will take 
no more than 30 minutes for each model to finish 100 epoches 
when use GPU accelerator(1 RTX 3070). From the loss plot, 
only the loss function of Dense model will oscillate in a certain 
range with the increase of training times. The loss functions of 
other models are monotonically decreasing. 

Evaluation 
Select Root Mean Square Error (RMSE) as the evaluation 

metric. Fig.5. shows the RMSE of different models. Table 1 
shows the corresponding values. From the figure and table we 
can see that recurrent neural networks models (GRU, LSTM, 
BiLSTM) perform better than others, which is reasonable since 
RNN is designed for sequence problems. During all RNN 
models, GRU model performs best. The RMSE of the GRU 
model is only 468, which is 80% of the base mode – Repeat 
model.  
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Table 5. The RMSE of 6 models (HanYang Station) 

Model Repeated Dense CNN 

train 703 818 742 

dev 594 574 549 

test 558 535 554 

Model LSTM GRU BILSTM 

train 636 656 628 

dev 483 483 481 

test 485 468 489 

Figure 6 shows one random prediction result using 
different models intuitively. From the figure we can see that the 
RNN model can catch the key information, such as the peaks 
and waves when predicting. 

Figure 7 The architecture of DeepAR model in training (left) and predicting (right) 



 

Figure 5. The RMSE of 6 models (HanYang Station) 

 

Figure 6. One prediction result in test dataset 

C. Water Consumption Prediction (probabilistic) 

In practical application, probabilistic prediction is more 
practical than point prediction. For example, as I mentioned at 
the beginning of the paper, the probabilistic prediction can give 
a water consumption range with confidence, which can help 
detect pipe bursts.  

Theory of DeepAR 
Salinas [17] proposed DeepAR, a methodology for 

producing accurate probabilistic forecasts, based on training an 
auto-regressive recurrent network model on related time series. 
The algorithm has the characteristics of strong learning ability 
and strong expansibility. It can not only learn multiple related 
time series at the same time but also consider different types of 
related variables. So, the state-of-the-art DeepAR algorithm 
was deployed here to build the probabilistic prediction model 
of water consumption.  

The same notation as in the paper [17] is used here to 
introduce the model. Denoting the value of time series 𝑖 at time 
𝑡 by 𝑧௜,௧ and the value of associated covariateds 𝑖 at time 𝑡 by 
𝑥௜,௧ , the goal of probabilistic prediction is to model the 
conditional distribution 

𝑃(𝑧௜,௧బ:்|𝑧௜,ଵ:௧బିଵ, 𝑥௜,ଵ:௧బିଵ) 

Of the future of each time series ൣ𝑧௜,௧బ
, 𝑧௜,௧బାଵ, ⋯ , 𝑧௜,்൧ ∶= 𝑧௜,௧బ:் 

given its past  ൣ𝑧௜,ଵ, ⋯ , 𝑧௜,௧బିଶ, 𝑧௜,௧బିଵ൧ ∶= 𝑧௜,ଵ:௧బିଵ , where 𝑡଴ 
denotes the time point from which we known for all time points.  

The DeepAR model based on an autoregressive recurrent 
network architecture is summarized in Fig 7. DeepAR model 
assumes that the model distribution 𝑄௵ consists of a product of 
likelihood factors 

𝑄௵(𝑧௜,௧బ:்|𝑧௜,ଵ:௧బିଵ, 𝑥௜,ଵ:௧బିଵ) = ∏ 𝑙(𝑧௜,௧|𝜃(ℎ௜,௧ , 𝛩))்
௧ୀ௧బ

  
parameterized by the output ℎ௜,௧  of an autogressive recurrent 
network 

ℎ௜,௧ = ℎ(ℎ௜,௧ିଵ, 𝑧௜,௧ିଵ, 𝑥௜,௧ିଵ, 𝛩)  (1) 
where ℎ is a function implemented by a multi-layer recurrent 
neural network with LSTM cells and 𝛩 is the model parameters. 
The likelihood 𝑙(𝑧௜,௧బ

|𝜃(ℎ௜,௧ , 𝛩)) is a fixed distribution whose 
parameters are given by 𝜃(ℎ௜,௧, 𝛩) . Since the water 
consumption is the real-valued data, Gaussian likelihood is 
used here. That is to say, 

𝑙(𝑧௜,௧|𝜃(ℎ௜,௧, 𝛩)) = 𝑙൫𝑧௜,௧ห𝜇௜,௧, 𝜎௜,௧൯  
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where 𝜇௜,௧ = 𝑤ఓ

்ℎ௜,௧ + 𝑏ఓ  and 𝜎௜,௧ = log(1 + exp(𝑤ఙ
்ℎ௜,௧ +

𝑏ఙ)). Thus, The model consists of the parameters of the RNN 
ℎ(∙) as well as the parameters of 𝜃(∙), which can be learned by 
maximizing the log-likelihood 

ℒ = ∑ ∑ 𝑙(𝑧௜,௧|𝜃(ℎ௜,௧, 𝛩))்
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where 𝑁 is the number of time series.  
Use Adma optimizer with learning rate = 0.001 to learn 

the parameters of the model. When it comes to prediction, 
ℎ௜,௧బିଵ can be obtained by computing for 𝑡 = 1, ⋯ , 𝑡଴ − 1 first. 

Then for 𝑡 = 𝑡଴, 𝑡଴ + 1, ⋯ , 𝑇,  sample 𝑧̃௜,௧~𝑙 ቀ∙ |𝜃൫ℎ෨௜,௧, 𝛩൯ቁ 

where ℎ෨௜,௧ = ℎ(ℎ௜,௧ିଵ, 𝑧̃௜,௧ିଵ, 𝑥௜,௧ିଵ, 𝛩)  initialized with 
ℎ෨௜,௧బିଵ = ℎ௜,௧బିଵ and 𝑧̃௜,௧బିଵ = 𝑧௜,௧బିଵ. 

Model 
Gluon Time Series (GluonTS) is the Gluon toolkit for 

probabilistic time series modeling, focusing on deep learning-
based models.[18] GluonTS has implemented the API of 
DeepAR model.The paper calls the API in GluonTS directly  to 
compile and train the model.  

After large-scale random search and manual tuning, the 
parameters of the model are determined. The samples are got 
from resampling every 10 minutes. In this part, we use 5 days 
(720) in the past as inputs and 1 days (144) in the future as 
outputs. Split the data with the same ratio (9:1:1) used in the 
value prediction model. So, the training data is from 2019-01-
01 to 2020-08-07. The development data is from 2020-08-07  to 
2020-10-19. The left data belongs to the test data. 

When predicting the water consumption of HanYang 
Station, the inputs include the water consumption series of 
HanYang Station, daily mean temperature and holiday 
information. When predicting the water consumption of WuJin 
Station, the performance will be better when we consider the 
water consumption series of HanYang Station. It should be 
noted that the weekends information are not included in the 
inputs. This is because the API has considered the time lag 
effects, which can reflect the weekends information from my 
perspective. Before fed into the model, all data (water 
consumption series and features) should be normalized.  

The inner network of the DeepAR model is a two layers 
LSTM network with 50 hidden units in each layer. All 
remaining parameters remain at their default values. Compile 
the model and Train it.  It will take no more than 1.5 hours for 
each model to finish 100 epoches when use GPU accelerator(1 
RTX 3070).  



Evaluation 
Import extra metrics Mean Absolute Percentage Error 

(MAPE)  and the percentage of the residuals more than 1000 
(𝛾). The reason I introduced 𝛾 here is because according the 
background of the problem, ±1000 is a value acceptable to the 
water supply company.  
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 Table 2 shows the metrics of DeepAR model in the test 
set. We can see that the DeepAR model performs well 
according to the three metrics. The model performs better in the 
WuJin Station data than HanYang Station. It can be found by 
studying the original data (Fig.3.) that from Jan 2020 to March 
2020, the water consumption has been greatly reduced (might 
because of the Covid-19) of HanYang Station. So, it might 
affect the performance of model in the test set of HanYang 
Station. 

Table 2. The metrics of DeepAR model in the test set 
 RMSE MAPE 

% more than 
±1000 

HanYang Station  430 5.30% 3.60% 

WuJin Station 331 6.00% 1.32% 

     Figure 8 shows a period of prediction results in the test set 
of HanYang Station. The black line is the observations, the 
green line is the predictions (median), and the red area is 
predictions ± 1000 . A red point means the absolute 
difference between observation and prediction is more than 
1000. The purple area means there are some pipe bursts during 
this period.  From this figure we can see that the model can do 
well in alarming.  

 
Figure 8. A period of prediction results in HanYang Station 

     Besides, I revised some source code in the API in order to 
make real-time updating of the model. That is to say, when it 
is used in reality, the model can update the parameters of the 
model with the lastes data.  

V.  CONCLUSION 

According to the experimental results of this paper, it can 
be found that the revised recurrent neural network model 
represented by GRU can well deal with the problem of time 
series data prediction. In terms of water consumption prediction 
(value) in this paper, the water consumption sequence of the 
previous day is used to predict the water consumption sequence 
of the next day. Using GRU model, the root mean square error 
(RMSE) of the test set is only 80% of the model where previous 
day’s water consumption is seen as equal as the next day’s 
water consumption.  

The Deep Autoregressive (DeepAR) model based on the 
recurrent neural networks shows satisfactory performance in 
probabilistic prediction. According to the experimental results 
of this paper, based on the DeepAR model, using the water 
consumption five days ago to predict the water consumption 
interval after one day, the mean absolute percentage error 
(MAPE) in test set can be controlled within 6%, which can be 
used for some pipe bursts alarming.  

VI. FUTURE WORK 

In the paper, two types of models can not be compared 
directly since the probabilistic predition model uses five days’ 
data, however, the value prediction model only uses one day’s 
data. More work needs be done to make the two kinds of models 
comparable.  
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