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Abstract

Chest X-rays are cheap, accessible, and commonly used as first tests in diagnosing
many lung diseases. Many hospital systems have vast amounts of X-ray data that
can be leveraged by AI systems to supplement radiologist predictions and improve
patient outcomes. In particular, radiologists pore over large numbers of x-rays, CT
scans, and MRI images every day [7], implying that a detection framework which
can serve as a pre-filter system, drawing bounding boxes around likely areas of
disease, would both significantly reduce a radiologist’s workload and help them
ignore negatives and hone in on positives, increasing their own diagnostic capacity.
To this end, we train both a multi-label classifier (ResNet-18) and a diseased-area
detector (Faster R-CNN + MobileNet backbone) on the NIH Kaggle dataset, and
are able to achieve 95% validation AccIoU (defined later) with our classifier and
pixel IoU of .206 with our object detection model.

1 Introduction

Chest X-rays are a staple tool for preliminary diagnosis of many respiratory diseases. As such,
building an ML model to predict diseases based on X-ray could be extremely beneficial. This was
evident in the Covid-19 pandemic, where increased vigor within the medical and AI fields resulted in
numerous chest X-ray Covid-19 classification models being developed. While initial results seemed
promising [8], an analysis of numerous approaches showed that seemingly impressive Covid-19
detection models were learning data artifacts instead of actual medical pathology [1]. Out of a set of
2,212 Covid-19+ML studies, 415 of which were examined post screening and 62 closely reviewed,
zero models were identified as clinically useful due to underlying flaws [10]. These recent undesirable
outcomes have highlighted the need for explainable, interpretable machine learning as a prerequisite
for clinical deployment across many disparate fields of medicine.

Healthcare is a data-rich field, but the data is often complex and requires expert-level annotation to
interpret. For this reason, many potential problems in healthcare lack sufficient data for a machine
learning model to train on [2]. For problems where a sufficient dataset exists, the interaction between
care providers and a trained model is still uncertain. Promising examples from diabetic retinopathy
screening show that optometrists and machine learning models perform better working in concert than
either alone [6], but this is a limited application example without lethal failure modes. In situations
where a mis-classification by a machine learning system is the difference between life and death,
extensive work is still needed to display why a model reached the decision that it did. Attention-based
approaches to classifying diseases via X-ray imagery like in [5] are promising, and can display
bounding boxes or heat maps to display to experts what the ML model sees. We intend for our project
to make an impact in the interpretatability space.

For the classification component of this project, we have that
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• The input to our algorithm is a re-scaled 224 x 224 chest x-ray image.

• The output labels (for classification) are one-hot class labels, with potentially multiple labels
to one image (e.g. an x-ray might be classified as both having emphysema and containing a
small nodule on its right side).

• The output boxes (for object detection) are given as (x, y, w, h) tuples for about 1000 of the
images, and represent bounding boxes around which the disease in question can be found.

• As stated earlier (and will be described in the methods section), we used a ResNet-18 for
classification and a Faster R-CNN + MobileNet backbone for object detection. The outputs
of the ResNet are per-class probabilities, and the outputs of the Faster R-CNN are bounding
box proposals with confidence scores attached.

2 Related Work

ChestX-Ray8

This work [11], which introduced the NIH dataset of 100k chest x-ray images, provided a strong
classification baseline/inspiration. Their key approach involved taking a DenseNet, removing the
final few FC and classification layers, and replacing them with a transform layer (effectively a size
normalization layer which converts the feature maps into a standard size foor the classification layer).
Moreover, they experimented with various loss functions and eventually settled on a weighted binary
cross-entropy loss:

−βP

∑
yc=1

log(f(xc))− βN

∑
yc=0

log(1− f(xc)) (1)

Where βP , βN represent the relative proportions of positive/negative examples within the dataset.

LSTM Label-Dependent Diagnosis

This subsequent work [12] sought to take advantage of and explicitly model the dependencies between
various labels (e.g. the presence of atelectasis makes it more likely that a particular lung is also
diagnosed with pneumonia), and did so by using an LSTM to output the final prediction labels
one-by-one – in other words, the image features from the main convnet were fed into an LSTM for
exactly c "timesteps" (where c is the number of potential classes present within an image), with each
(ith) "timestep" outputting the probability that the ith class is present within the image.

CheXNet

This work tackled the classification task using a much deeper (121 layer) DenseNet, showing that a
larger network genuinely increases task performance – note that the training procedure had almost
no extra bells and whistles, yet achieved near-human level performance (and in fact, exceeded
radiologists’ performances on pneumonia); the main contribution here (aside from their state-of-the-
art F1 scores) is their activation map visualizations, which effectively show which parts of the input
image contribute most to the classification score computation made at the final layer, indeed verifying
that the model is finding the correct visual features/regions correlated with the presence of diseases.

3 Dataset and Features

The dataset we have chosen was provided by the National Institutes of Health and is comprised of
112,120 Chest X-ray images from 30,805 unique patients. Each X-ray image is of size 1024x1024
pixels and has a single channel. The creators of the dataset used Natural Language Processing
to text-mine disease labels from the radiological reports associated with each image. There are
15 label classes– 14 diseases and asymptomatic lungs. Images can be classified as "No findings"
or one or more disease classes including: Atelectasis, Consolidation, Infiltration, Pneumothorax,
Edema, Emphysema, Fibrosis, Effusion, Pneumonia, Pleural Thickening, Cardiomegaly, Nodule
Mass and Hernia. Because they were generated by an NLP algorithm, the labels are expected to be
>90% accurate and suitable for weakly-supervised learning. Additionally, — diseased images have
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Figure 1: X-ray images labeled ’cardiomegaly’. Each image is of shape 1024x1024 with a single
channel. A bounding box annotation is provided for the right image.

bounding-box annotations that were drawn by a radiologist. These bounding boxes are represented in
the dataset by the bottom-right coordinate, the height, and the width.

For the classification task, we created a train set of — images and a test set of — images.

For the object detection task, our train dataset contained 801 images and our validation dataset
contained 113 images.

We pre-processed training and validation images in both tasks by normalizing with the dataset-wide
pixel mean and standard deviation. For the classification task, images were down-sampled to size

4 Methods

Multi-Label Classification

Model + Training – We used a fresh (non-pretrained) ResNet-18 model, modified to output a
15-dimensional vector of probabilities (no softmax, but rather per-class sigmoid activations). Note
that ResNet was first described by Kaiming He et. al. at FAIR back in 2015, and involves providing
"residual" identity connections between convolutional blocks.

Our loss function was a weighted, per-class binary cross-entropy loss (positive examples were
weighted inversely proportionally to their frequency within the dataset) – see equation (1) above.

We used Adam as our optimizer at a learning rate of 3e-4.

Evaluation – We created a custom "IoU" accuracy metric for multi-label classification. To illustrate
this metric, let y, ŷ ∈ {0, 1}k be the ground truth and predicted labels for each of the disease classes,
respectively. Then we have that

AccIoU =
y⊤ŷ∑k

i=1 max(yi, ŷi)
(2)

Intuitively, we have that AccIoU is simply the number of correct labels over the total number of classes
which were correct or predicted, or both.

Moreover, we defined a custom confusion matrix, defined thus – again, let y, ŷ ∈ {0, 1}k be the
ground truth and predicted labels for each of the disease classes, and let M ∈ Nk×k be our confusion
matrix. Moreover, let ŷinc ∈ {0, 1}k be the "incorrect" labels, i.e. ŷinc is 1 wherever ŷ is 1 and y is 0.
Then for each index i where yi = 1 we have that

Mi := Mi +
1∑k

j=1 yj
ŷinc + ŷi (3)
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In other words, each "incorrect" label contributes 1
c (where c is the number of correct classes) to each

row of the confusion matrix corresponding to a "correct" class. If there is a single correct label, the
above formula reduces to the canonical confusion matrix computation.

Bounding Box Object Detection

We used a fresh (non-pretrained) MobileNet architecture as the backbone of our Faster R-CNN
pipeline for object detection. Note that MobileNet is an efficient convolutional architecture which
relies on separating out "pointwise" 1 × 1 × c and "depthwise" w × h × 1 convolutional kernels,
rather than have a "full w × h× c kernel.

Faster R-CNN [9] is an end-to-end pipeline for object detection. In summary, the technique is the
latest evolution in the R-CNN [4] series; the intuition behind the primary network in the RCNN series
is that we begin with an input image and eventually produce image patch features (in Fast R-CNN
[3], the patch features are computed by caching a feature computation over the entire image and then
segmented appropriately, rather than computing a forward pass over each raw image patch), which
are then classified into k+1 classes, the extra class being a discarded "background" class. Finally, all
three architectures feature a bounding box "correction" step, which learns (via regression) parameters
adjusting the center and side lengths of the patches, producing the final bounding boxes.

5 Experiments/Results/Discussion

5.1 Classification Performance

The confusion matrix for the classifier (trained after 60 epochs) on the validation set. Indeed, the
classifier gets an AccIoU (defined above) of 95% on the val set after training for just 30 epochs!
Loss/AccIoU curves are omitted for brevity.

5.2 Object detection performance

Our Faster-RCNN model trained for 50 epochs on the bounding-box labeled dataset achieved an
average pixel-IoU of .206. This means that on average, a quarter of the area of the model’s predicted
bounding boxes overlapped with the true bounding box. The average-pixel IoU increased with
training, showing that the model was learning to identify some diseases. However, the labeled data
was too small and covered too many diseases for the model to perform at a level that could be used in
a clinical setting. This training disappointment emphasizes the need for radiologists to annotate more
X-ray data and the important of developing semi or self-supervised object detection methods.
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Figure 2: The red, left-most bounding box was predicted by the trained Faster-RCNN teacher model,
whereas the right-most blue box is the true bounding box of the disease. It appears that the model
sometimes classifies breasts and nipples as diseased regions, suggesting the need for a biological sex
field to be included with each X-ray image.

5.3 The effect of post-nms filtering values

Due to our Faster-RCNN being trained on a relatively small amount of data, it seemed to predict many
more detections than were actually present in the validation set, which had one detection per X-ray.
We tried to mitigate this behavior in two ways. First, because the model returns a classification score
with each prediction, we filtered generated predictions to only use the bounding box associated with
the highest classification score. Additionally, we attempted to limit the number of region proposals
that were passed to the final network in the Faster-RCNN pipeline.

5.4 The potential need for a biological sex label

We noticed that our teacher Faster RCNN model was oftentimes drawing bounding boxes around
what appeared to be biological women’s nipples (Fig 2), even if the bounding box label was elsewhere
in the chest X-ray. Upon further examination, the presence of breasts was quite noticeable in the
X-rays. For this reason, we recommend future researchers add the sex of the patient, so the model
can learn to avoid classifying breasts/nipples as diseases, but also so trained models can correlate
diseases that more commonly plague members of a specific biological sex with a chest X-ray.

6 Conclusion/Future Work

Overall we’ve found that leveraging AI systems to supplement radiologists’ diagnoses of many lung
diseases with chest X-rays can be extremely meaningful especially considering the vast amounts of
X-ray data radiologists have access to in terms of of X-rays, CT scans, and MRI images every day.
We’ve found that drawing bounding boxes around likely areas of disease which would resemble a
pre-filter system would both significantly reduce a radiologist’s workload but also help them ignore
negatives and hone in on positives, increasing their own diagnostic capacity.

We were able to train both a multi-label classifier (ResNet-18) and a diseased-area detector (Faster
R-CNN + MobileNet backbone) on the NIH Kaggle dataset and were able to achieve a 95% val
AccIoU with our classifier.

In future, if we had more time and team members we would love to have explore additional datasets
expanding from our current Chest X-ray images. This could include CT scans and MRI images,
expanding to other image based datasets abundant to radiologists.
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7 Contributions

Sam: Object detection via training Faster-RCNN; wrote up the entire training and testing pipeline, as
well as created visualizations. Attempted semi-supervised teacher-student model object detection
training.

Ryan: Wrote up pipeline for training and testing classification models; created new metrics for
multi-label classification and came up with confusion matrix visualization

Kiara: Dataset analysis (normalization constants, frequency analysis, label analysis), wrote up
train/val dataset and visualization scripts; write-up lead and video lead
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