
Brain Maximum Principal Strain (MPS) Evaluation in
Head Impact

Mabel Jiang
Mechanical Engineering

Stanford University
jyh1998@stanford.edu

Mingruo Shen
Civil and Environmental Engineering

Stanford University
mingruos@stanford.edu

Shunyao Xu
Electrical Engineering

Stanford University
shunyaox@stanford.edu

Abstract

As a necessary demand of athletes and medical professionals to recognize potential
damage region in brain and to diagnose Mild Traumatic Brain Injury (mTBI) in
time, a fast and practical mTBI detection and prediction method is in need to be
developed. In this project, 8 dimensions of kinematic data are used to train, validate,
and test on the 1-dimensional Convolutional Neural Network (1D CNN) models to
predict for both Maximum Principal Strain (MPS) and Maximum Principal Strain
Rate (MPSR). Models developed from this project have the potential to detect brain
deformation from contact sports practically.

1 Introduction

This project is mainly focused on the development of a reliable model to detect Mild Traumatic Brain
Injury (mTBI) in head impact. Commonly seen in contact sports games, mTBI usually comes with
symptoms such as headache, fatigue, or even temporary loss of consciousness [1]. Therefore, it is of
necessity for athletes and medical professionals to understand the potential brain damage it might
cause at specific brain regions, to monitor real-time mTBI, and to customize specific suggestions
during daily exercises and games. Accordingly, a fast and practical method of mTBI detection and
prediction is in need.

Based on the previous CS230 project by Xianghao Zhan and Yiheng Li [2], our project aims to develop
a more accurate deep learning model for head impact detection using larger datasets, preprocessed
inputs, and different algorithms. The input of our model are a series of kinematic data of head
impact. We use a 1-dimensional Convolutional Neural Network (1D CNN) model to output predicted
Maximum Principal Strain (MPS) and Maximum Principal Strain Rate (MPSR), which are indicators
for evaluating the brain deformation, and evaluate the model and the prediction by Root Mean Squared
Error (RMSE).

2 Related work

O’Keeffe, Eoin et al.[3] had implemented KTH finite element(FE) model in estimation of brain
tissue deformation. However, a FE model’s relatively high computational cost does not meet the
requirement of real time monitoring of this project. Zhan, X et al.[4] had proved that deep learning
model have much lower computational cost than the traditional FE modeling method. They realized
real-time brain deformation monitoring and prediction of brain MPS by applying a five layers DNN
pre-computed model. While selecting inputs, they did not include linear acceleration since it was
shown that linear acceleration is not related with brain strain. Similarly, for our model, we only

CS230: Deep Learning, Autumn 2021, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



included 8 channels of data, angular velocity and angular acceleration out of 12 channels. Liu,
L et al.[5] had proposed two robust deep learning algorithms regarding herbal medicine origins
classification, one 1D CNN model and one multivariate time pooling model. Two dimensionality
reduction methods, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis)
were exploited in their modeling. For our model, we chose not to reduce the dimension because it
potentially leads to some amount of data loss and we decided to keep all the components to achieve
better results. Shaoju Wu et al.[6] also implemented a CNN model to predict the brain MPS. Unlike
other models using the velocity profiles data as input, the data were instead transformed to a 2D
image which then was input into CNN. This creation is inspiring with respect to the monitoring and
visualization of brain deformation. Regarding the architecture of 1D CNN model, Ullah et al.[7] had
proposed a pyramidal 1D CNN model, where lower level layers have larger number of filters than the
higher level layers. The similar 1D CNN architecture was implemented in our model and will be
explained in details in the later Experiments/Results/Discussion section.

3 Dataset and Features

The data we used in our deep learning model, collected by Stanford Instrumented Mouthguard, is the
kinematic data of head impact generated from real sport games, including College football matches
(CF) and Mixed Martial Arts (MMA) [8, 9, 10, 11]. A Head Modeling (HM) dataset, consisting of
simulated data, is also exploited to make up for the lack of real data. The kinematic dataset, consisting
of angular velocity and angular acceleration data in three dimensions, is measured in 6 degrees of
freedom. Together with the magnitudes, kinematic data input are 8 dimensional.

Table 1: Information and Dimension of the Dataset

The Table 1 above shows the information and dimensionality of the datasets we use. The time
frame in each dataset is different and the longest time frame is 200 ms. We decided to standardize
all dataset’s time scale to 200 ms as the longest time frame by putting the data in the middle and
concatenating zeros before and after the available data for datasets with shorter time frames. For HM
data, with an initial shape of (12780, 8, 70), the training data was standardized to (12780, 8, 200),
and then flattened to (12780, 1600). The Figure 1 below shows an example of input data in the scaled
time frame. There are 12780 samples in total. The training, dev, and test sets are split with fraction of
8 : 1 : 1. There are 10224 samples of data in training set, 1278 samples of data in dev set, and 1278
samples of data in test set. To make our training faster, our data is normalized. Figure 1 below shows
an example of flattened and normalized data sample from HM.

Figure 1: Preprocessed Data in 1600 ms Time Frame

In order to account for the difference between HM and the real datasets, which comes from the time
frame difference of the datasets and the heterogeneity of College Football and Mixed Martial Arts,
we split both CF and MMA datasets by half, concatenate 50 percent of real sports data with the dev
set, and leave 50 percent of real data as test set. Therefore, in total, there are 10224 samples of data

2



in the training set, 1657 samples of data in the dev set, and three test sets consists of 1278 HM data,
151 CF data, and 229 MMA data.

The outputs of our model are the MPS and MPSR, which are indicators for evaluating the brain
deformation. With the shape of (4124,1), it represents the 4124 different regions in the brain. We
chose not to reduce the dimensionality because it potentially leads to some amount of data loss and
we decided to keep all the components to achieve better results.

4 Methods

As the past project used DNN and LSTM models, we would like to approach this problem with a
different method. In this project, we focused on the implementation of 1 Dimensional Convolutional
Neural Network, developed under Tensorflow and Keras framework. With 1D signal as input, the
computational cost would be lower than 2D CNN and would be beneficial for this project as we have
over ten thousands data samples to go over hundreds of epochs.

For the baseline model, with an input shape of (1600,1), the first two layers are convolutional layers
with 64 filters and 2x2 kernel size. The activation function is ReLU. To downsample the feature map,
the third layer is a MaxPooling layer with 2x2 kernel size. Then the feature was flattened, and there
are two fully connected layers at the end. The first fully connected layer has 1000 neurons, and the
second one has 100 neurons. The output shape is (4124,1). The batch size is 128, the optimizer is
Adam with default learning rate and decay, and the epoch is 100.

Some equations associated with the algorithms: Rectified Linear Unit (ReLu) has an equation of
y = max(0, x); the mathematical formulas for Adam (simplified):

v = β1v − (1− β1)∇θ

s = β2s− (1− β2)∇θ2

θ = θ − αv/sqrts

Because we are addressing a regression problem instead of classification, we would like to keep track
of the accuracy by error between the real data and prediction. Therefore, the loss function we use in
the models is Mean Squared Error, which is defined as the equation MSE = 1/n ∗

∑
(y − ypred)2.

The performance metric we use is Root Mean Squared Error, which is better compared to MSE as it
penalizes more on larger errors. The mathematical equation of RMSE is:

RMSE = sqrt1/n ∗
∑

(y − ypred)2

We will further discuss the architecture and algorithms of the models we use in the next section.

5 Experiments/Results/Discussion

Apart from dimensionality, 1D CNN follows the same methodology as 2D CNN. Figure 2 shows the
architecture of our 1D CNN model. The input of the model is first processed by two convolutional
layers. Each of these two layers has 64 filters and 2x1 kernel size. Activation function ReLU is used
in both of these layers. After these two convolutional layers, the model uses a Maxpooling layer to
reduce the number of features and select the dominant ones. The Maxpooling layer also uses a kernel
of 2x1. A dropout layer with dropout rate 0.5 is applied to prevent overfitting. After that, the tensor is
flattened and passed to two fully connected layers. The first fully connected layer has 400 neurons,
and the second one has 100 neurons. A output of size 4124x1 is generated by propagating through all
these layers.

Using the architecture described above, the 1D CNN model is constructed. A default learning rate
of 0.001 is implemented because we don’t expect the model to learn too faster. With a huge input
and output size, a relatively lower learning rate can ensure a stable learning process and prevent the
model from learning a sub-optimal set of weights too fast. Our primary metrics is the root mean
square error. Accuracy is not applicable in this case since this is not a classification problem. We
want the output of our model to get as close as possible to the expected outcome, but in many cases it
will never be exactly the output we want. By tuning the number of epoch and mini-batch size, we
decide to train the model for 100 epoch and use 128 mini-batch size.

3



Figure 2: 1D-CNN Architecture

Using Maximum Principle Strain Rate (MPSR) as label, the 1D CNN model was trained. Figure 3
(left) presents the training result as a plot of the root mean square error for each epoch. From the
figure, it’s clear that the model tends to overfit to our training set because the gap between training set
error and dev set error is getting larger and larger.

Figure 3: Training Result - Model 1 (MPSR Label) Training Result - Model 1 (MPS Label)

The same model was trained again Using Maximum Principle Strain (MPS) as label. Figure 3 (right)
shows the training outcome. Compared with Figure 3 (left), the overfitting problem is significantly
smaller.

As mentioned in the Related Work Section, the architecture of a pyramidal 1D CNN would reduce
the numbers of learnable parameters and hence reduce the risk of overfitting [7]. Its architecture is
shown in Figure 4. To further mitigate the overfitting, we changed the architecture of our model.
Batch normalization was added to each convolutional layer, and the number of filters for each layer is
slightly modified to achieve a pyramidal structure. As shown in Figure 5, this model has a relatively
better result than the previous model in terms of variance, but the bias is getting a little bit worse.

Figure 4: Pyramidal 1D CNN Architecture [7] - Model 2

After the models were trained, the performance of these models were evaluated by predicting on
test set. Test set can help us make sure that the model is good enough for unseen data. Since our
test set contains data from Head Modeling, College Football (CF), and Mixed Martial Arts (MMA),
we use our models to predict on them separately in order to illustrate the performance of our model
when predicting on difference types of data. The table below shows the results. As presented in the
table, the models generally achieves a low error when predicting on HM data because HM data takes
a larger portion of our training set. Moreover, the table shows the inference speed for each model.

4



Figure 5: Training Result - Model 2

Inference speed is calculated by predicting on 1000 samples and then divides the time it took by 1000.
It turns out to be a very important metrics because we want our model to be deployed in real-time.
Based on the table, all of the three models achieves a pretty good inference speed.

Table 2: Prediction on Test Set and Inference Speed

6 Conclusion/Future Work

As discussed in the previous section, the Model 1 (MPSR label) and Model 1 (MPS label) result
in great performance on the HM dataset. Accounting for different distributions and heterogeneity
of different sports, it is reasonable that the RMSE of CF and MMA are relatively higher than the
RMSE of HM. From Table 2, the errors of CF and MMA are also relatively small and show good
performance. The reason Model 1 works better than Model 2 is that we purposefully adjusted the
algorithm, including parameters and layers, to reach a better performance, so the algorithm would be
very suitable in this project, while the Model 2 architecture comes from another paper with the topic
of Epilepsy Detection Using EEG Brain Signals [7]. As the pyramidal architecture is also used in
brain signal prediction, the performance is also relatively good, especially for CF dataset.

Figure 6: 3D visualization of real brain impact 3D visualization of predicted brain impact

The Figure 6 above shows an example of 3D visualization of real brain impact (left) and predicted
brain impact (right) from Model 1, which clearly show that the predicted brain impact is very close to
the real brain impact. This indicates this model has the potential to detect brain deformation from
contact sports practically.

The future work would attempt to use Domain Regularized Component Analysis (DRCA) to create
a subspace projection in order to reduce drifts and achieve more accurate and reliable results from
different sports dataset [12].

5



7 Contributions

Mabel Jiang: I did the literature review, looked into possible model related to brain field, and
contributed to the coding of the second 1D CNN model. Additionally, I wrote section 1, section 2,
and model 2 part of section 5 of the final report.

Mingruo Shen: I obtained the data, contributed to the coding part of Model 1 (MPS) and (MPSR),
and decided the loss and performance metrics. Moreover, I wrote the abstract, section 3, 4, and 6 of
the final project.

Shunyao Xu: I was responsible for designing and training the 1D CNN models. I also helped with
data processing. Moreover, I assisted the result analysis. For example, I evaluated the performance of
the models on test set and generated figures to use in the report. Additionally, I wrote the section 5 of
the final report.

8 Code

https://github.com/shunyaoxu/StanfordCS230P roject

References

[1] McInnes K, Friesen CL, MacKenzie DE, Westwood DA, Boe SG (2017) Mild Traumatic Brain
Injury (mTBI) and chronic cognitive impairment: A scoping review. PLoS ONE 12(4): e0174847.
https://doi.org/10.1371/journal.pone.0174847

[2] Zhan X., Li Y. (2020). Fast Brain Strain Evaluation in Head Impact.

[3] O’Keeffe, Eoin et al. “Dynamic Blood-Brain Barrier Regulation in Mild Traumatic Brain Injury.” Journal of
neurotrauma vol. 37,2 (2020): 347-356. doi:10.1089/neu.2019.6483

[4] Zhan, Xianghao et al. “Rapid Estimation of Entire Brain Strain Using Deep Learning Models.” IEEE
transactions on bio-medical engineering vol. 68,11 (2021): 3424-3434. doi:10.1109/TBME.2021.3073380

[5] Liu, L., Zhan, X., Duan, Z., Wu, Y., Wu, R., Guan, X., Wang, Z., Wang, Y., Li, G. (2021). Clas-
sifying herbal medicine origins by temporal and spectral data mining of Electronic Nose. arXiv.org.
https://arxiv.org/abs/2104.06640.

[6]Shaoju Wu, Wei Zhao, Kianoosh Ghazi, and Songbai Ji. (2019). Convolutional neural network for efficient
estimation of regional brain strains. Scientific Reports. 9. 10.1038/s41598-019-53551-1.

[7] Ullah, Ihsan, et al. (2018). An Automated System for Epilepsy Detection Using EEG Brain Signals Based
on Deep Learning Approach. arXiv.org. https://arxiv.org/abs/1801.05412.

[8] Liu, Y., Domel, A. G., Cecchi, N. J., Rice, E., Callan, A. A., Raymond, S. J., Zhou, Z., Zhan, X., Zeineh, M.,
Grant, G., amp; Camarillo, D. B. (2021). Time window of head impact kinematics measurement for calculation
of brain strain and strain rate in American football. arXiv.org. https://arxiv.org/abs/2102.05728.

[9] Camarillo, D. B., Shull, P. B., Mattson, J., Shultz, R.,amp; Garza, D. (2013). An instrumented mouthguard for
measuring linear and angular head impact kinematics in American football. Annals of Biomedical Engineering.

[10] Liu, Y., Domel, A. G., Yousefsani, S. A., Kondic, J., Grant, G., Zeineh, M., amp; Camarillo, D. B. (2020).
Validation and comparison of instrumented mouthguards for measuring head kinematics and assessing brain
deformation in football impacts. arXiv.org. https://arxiv.org/abs/2008.01903.

[11] Hernandez, F., Wu, L. C., Yip, M. C., Laksari, K., Hoffman, A. R., Lopez, J. R., Grant, G. A., Kleiven, S.,
Camarillo, D. B. (2015). Six Degree-of-Freedom Measurements of Human Mild Traumatic Brain Injury. Annals
of biomedical engineering, 43(8), 1918–1934. https://doi.org/10.1007/s10439-014-1212-4

[12] Zhang, L., Liu, Y., He, Z., Liu, J., Deng, P., Zhou, X. (2017). Anti-drift in E-nose: A sub-
space projection approach with drift reduction. Sensors and Actuators B: Chemical, 253, 407–417.
https://doi.org/10.1016/j.snb.2017.06.156

Code and Libraries

Tensorflow: Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey

6



Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.(2015) TensorFlow:
Large-scale machine learning on heterogeneous systems, Software available from tensorflow.org.

Keras: Chollet, F., others. (2015). Keras. GitHub. Retrieved from https://github.com/fchollet/keras

7


	Introduction
	Related work
	Dataset and Features
	Methods
	Experiments/Results/Discussion
	Conclusion/Future Work
	Contributions
	Code

