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Abstract

In semiconductor industry, wafers have surface undulations (topological variations)
typically up to <50um. Wafer types such as 3DIC have a lot of vertical IC structures
with varying topology up to 800um. Optical inspection tools scanning these wafers
for surface defects have smaller depth of focus at higher magnifications. For a
wafer with surface variations, the images captured at higher magnification produces
blurred images. Blurred images make traditional defect finding algorithms to per-
form poorly. To inspect 3D structures within a chip (die) at higher magnifications,
currently there is a need to use complex optical engineering techniques, which is
time consuming.

We propose to train a deep supervised CNN network with residual block that takes
down-sampled high-resolution images obtained with focus assist from HW to
predict the height variation map given a low-resolution image as input. The height
variation map thus output can be used for various defect finding algorithms to boost
throughput.

1 Introduction

In the field of semiconductor wafer defect inspection and metrology, to study the surface of wafer and
to inspect them for any surface defects high precision objectives/camera with various magnifications
are used. In KLA’s wafer inspection tools, pre-capturing the focus map (which is a time-consuming
process using real time Z-sensors and other engineering techniques) before the inspection is avoided
to gain time or throughput. A real time proprietary Auto focus system to provide real time wafer
depth information is used instead to inspect SEMI standard wafers.

While inspecting high topology wafers, the Auto focus systems are prone to focus failures particularly
with higher magnification that have lesser Depth of focus (DOF). A focus assist map input at higher
mags can make Auto Focus (AF) systems work reliably and accurately.

The below image shows how a wafer layout in a KLA Inspection system looks with a typical high-
topology wafer having missing dies (or holes). The grid in white color is an artifact drawn over the
output image to help guide the user to locate a die within a chip. The presence of one of the die
(chip) on surface of wafer is marked by orange box, where as for the one where we don’t have a
chip is marked with a green colored box. When the AF system scans over a missing die at higher
magnification, it struggles to find the real time focus and can error out.
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To achieve the end goal, we used an DL network that can determine the height variations in the wafer
surface with an image captured at a lower magnification (faster to capture image in lower mags).
This depth variation information thus predicted can assist the AF systems in real time to avoid focus
errors. This also helps the inspections to detect defects on the surface of the wafers even at higher
magnifications without errors or throughput loss.

2 Challenges

1. The main challenge is mining the data for training since wafer images are not available in
the public domain due to IP reasons. Gathering the vast set of images of different types of
high topology wafers is a challenge.

2. Another challenge is mapping focus values collected from high precision z-sensors to the
training image

In the above image, as you can notice – wafer surface is uneven from left to right because of wafer
design. Currently: the height map graph recorded by AF system takes the max of all Z height across
‘y’ for a particular ‘x’ position in the image and reports the same. For e.g., the green box with red
outline above has a surface height as 100um; where as a structure along the same ‘y’ is 150um. The
AF system along the y records the height as 150um (and not on a per pixel basis). Ideally, the z-sensor
values collected with time as a scale need to be mapped to every (x, y) pixels in the image collected.
If this DL solution can resolve the same, it’s an added positive upshot.

3 Related work

The above explained problem statement of finding the height variations on top of the wafer can also
be logically converted into a problem of finding the depth of every point on the wafer with respect to
the camera that is capturing it and distance of plane that holds the wafer. Hence, the problem can be
mapped to the depth estimation of the object to the camera. There are many classical sensor-based
methods, analytical methods and latest deep learning techniques were employed. Some non DL
techniques are explained below in Appendix - Related work

Deep learning: The interesting works that is related are from a paper by Iro Laina et al [5] on ’Deeper
Depth Prediction with Fully Convolutional Residual Networks’ which discussed depth prediction
of Images. This paper introduces a fully CNN architecture to depth prediction, endowed with novel
up-sampling blocks, that allows for dense output maps of higher resolution. This paper also proposes
a more efficient scheme for up-convolutions and combine it with the concept of residual learning.
Other notable works include Depth Estimation from Single Image Using CNN-Residual Network by
Xiaobai Ma et.al [9], Estimating Depth from RGB and Sparse Sensing by Zhao Chen et.al.
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4 Dataset and Features

The raw image data set contains 2000+ of wafer inspection images with 16-bit gray scale images and
corresponding Z-data (height data from KLA’s AF systems) are captured at a higher magnification
from the wafer scanning tool. The images are captured at different chip locations keeping the scan
image width and height fixed. Data pre-processing involves segregating or clipping the images
grabbed in a proper(equal) length along with sensor values collected. We make use of existing AF
sensors out channel for getting the height information. The architecture and logic for capturing
the Z-data from firmware did not exist before. Specifically for this project, we had to inject some
firmware level code to grab the data. We were successful enough to grab the data from firmware
which was spewing out AF data at 8000Hz. The data-grabbing is tuned to high frequency specifically
for this project because we need the minute changes in nanosecond levels as the wafer scans happen
at a very high speed. The plotted graph of Z-data for one left to right scan collected by this method is
shown below:

Sample Image: The below image is a clipped part image of the scan image used for training. Like
the below image, many scanned images will be collected from the different wafer/tools and clipped
using pre-processing.

The figure on the left below shows one row scan from left to right in a 300mm wafer with 3DICs
while the figure on the right shows the corresponding z-data or height variation map grabbed from
AF systems while performing the defect inspection.

Pre-processing: The wafer image is a gray scale on the left as its scanned is from a high magnification
setting. As part of pre-processing, the image is down-sampled; sliced to match the network inputs[13]
and served as Input vector (X) for training. Along with the image, HW sensor data from AF system
is also collected(Y).

5 Methods

We use a modified version of FCRN (Fully Convolutional Residual Networks) to help predict the
height variation map [13]. The base version of the FCNR model has been taken from the reference
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cited. The FCRN layer shapes is customized to support out 16 bit greyscale channel and size instead
of existing 3 channel and wafer images of 4342 * 4342 size instead of NYU dataset size.

The CNN + Residual model is the architecture proposed initially by [11] which uses ResNet50 [5]
without the last fully-connect layer and pooling layer as feature extractor, and then uses up-projection
blocks to up-sample the extracted feature. The FCRN network is composed of a first ResNet50 block
with initialized pre-trained weights, and progresses with a sequence of convolutional and unpooling
layers that make the network learn its upscaling. Dropout layers are then placed at the end alongside
final convolution layers that yield the predicted result.

FCRN is one of the most used models for on-device depth prediction. It’s interesting to note that the
overall FCRN architecture is highly inspired by the U-Net scheme. Both use three downsampling
and three upsampling convolutional blocks with fixed filter 3×3. Originally, U-Net was built with
two convolutional layers in each block and the number of filters for all convolutional layers was kept
constant. Conversely, in the FCRN implementation, the authors increased the number of subsequent
layers to compensate for the loss of higher-resolution information caused by pooling.

We followed a similar approach as the above model is a proved one , but modified it to our need as
shown below:

6 Experiments/Results/Discussion

Code and Experiments The initial data set has been collected for training, dev, and test from the
target 3DIC wafers along with HW data from one lot of KLA wafers. The samples from the same are
show in previous section. Data has to be pre-processed to do the down-sampling with height data
synchronization to provide labeled output (for the training data). Challenges during the pre-processing
have been captured in Appendix - Challenges during Data Pre-processing

Experiments and multiple iterations of training were done with different ways of feeding in the data
to the network. Initially tried with full resolution of images and later with 16-bit images. Finally,
4342 * 4343 resolution images are downsampled to 228 * 228 size to decrease the training time and
cost.

Experiments were done on the Z - data (Y - output) to make it normalized between 0 to 1 as float, as
the Z (height data) range is from (0 to 25000). Finally, The Z-data which has the ground truth range
from (0 to 25000) are also downsampled to (0 to 255) for faster convergence.

A separate pre-processing script ’mimReader.py’ for converting raw images to png format was used
and ’syncPreprocesWaferData.py’ to process/sync/align the AF sensor data and with wafer image
data and crop them into many pieces for train/test dataset. ’waferloader.py’ was used to read the
wafer data and to downsample the dataset which was fed to PyTorch.

The pre-processed data is then trained using train.py. The pre-trained weights are loaded using helper
methods in weights.py from NYU_ResNet-UpProj.npy. fcrn.py orchestrates the network architecture
that is called from train.py as part of training the image data.

Baseline To speed up the work and to establish the baseline results using the model chosen, we have
used the existing model training weights from pre-trained model on NYU Dataset. Since we have
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modified the training data input layer(shape and channel), the pretrained weights cant be loaded as it
is, so we have dropped few trained layers from pre-trained weight to match out input/output data.

Initially, the qualitative result is observed and gathered by taking the model train on the NYU dataset
and used it to predict the depth map for the input from the Collected KLA Wafer dataset.

Network and Hyper-Parameters The modified FCRN network is tabulated in the Appendix -
Network Details.

The convolutional block, consisting of a convolutional layer, batch normalization, and activation
function. This is a PyTorch implementation adapted from [13] to tune to our data set. The following
are the hyper-parameters that we used:

• Network Architecture: FCRN (ResNet50) with pre-trained weights
• Added: Up-projection layer to preserve the feature map for hi-res images
• No. of Images for training: 3000
• No. of Images for dev: 200
• No. of Images for test: 70
• Image size: 228 * 228
• batch size: 35
• epochs: 10
• learning rate: 1.0e-5
• momentum: 0.9
• weight decay: 0.0005

Results

• A significant part of the project work involved in pre-processing the data to align the image
data (X) with (Y) data taking into consideration the machine boundary conditions

• The final result of synchronization of X and Y dataset could be seen in the below image
(image on the left)

• Initial iterations with high resolution image, high range z-data, without pre-trained weights
etc., did not converge all that well with high loss throughout multiple epochs

• Finally: after the changes in the data as well as to the network, we are able to find a good
result as shown in the image below. As seen in the image below, after the 12th epoch we are
able to good convergence of the network (image on the right)

Discussions Some more tuning of network architecture is required to improve the training accuracy
and try changing the batch size, adding regularization improve the inference accuracy are to be carried
out. We plan to train the network with variety of different types of wafer data rather than just one to
get better results. For want of time and IP, we could not arrive at conducive results; however we want
to pursue this further and solve this interesting Computer vision problem.

7 Contributions

Krishnachandiran was involved in data pre-processing and setting network up for the training.
Muthukumar was involved in tuning the hyper-parameters for the network chosen and providing up
with different ideas.
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8 Conclusion/Future Work

To get a faster output, specifically for the project: we had to some compromise and do changes to few
areas different from what we initially planned. In future, we plan to try the following:

1. Grab 3 channel images from the tool and train

2. Making the network model to fix bounding boxes to detect the die start and end positions

3. Use the high resolution z-data itself as it for training or atleast normalize it, instead of losing
precision information as did for the project

4. The data we used for this project is 5X, we wanted to experiment this with high resolution
like 20X , 35X which gives near to pixel level data for training

5. For IP reasons, we are able to use only single type of wafer data to do training. The network
need to be trained with different types of wafer and layer (in case when using this project
within the company while adopting it as a solution)

This is an interesting problem to solve with AI based solution for KLA and can significantly boost
the business in the chosen field of Computer vision/Semi conductor space. With varied data from
different customer wafers and by tuning the network along with significant time investment, we
expect to produce positive results solving for the business.
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9 Appendix

Challenges during Data Pre-processing Good amount of time was consumed in the data collection and
writing the logic for data pre-processing. Few challenges to mention: we had the image data without any
physical coordinates, but the z-data grabbed at 8000Hz along with encoder counts (encoder counts are physical
measurement in micron scale. 32 encoder counts = 1 micron). We know that camera resolution is 1 pixel =
1.2913298 um. So while plotting the z-data along the image, either flooring or rounding the pixel value leads to
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bigger or smaller dimension of Y. Finally plotted the Z-data into Image gradient and compressed the image to
match the size of X input, which syncs the data better.

Network Details

Layer (type) Output Shape Params

• Conv2d-1 [35, 64, 114, 114] 3,136

• BatchNorm2d-2 [35, 64, 114, 114] 128

• ReLU-3 [35, 64, 114, 114] 0

• MaxPool2d-4 [35, 64, 57, 57] 0

• Conv2d-5 [35, 64, 57, 57] 4,096

• BatchNorm2d-6 [35, 64, 57, 57] 128

• ReLU-7 [35, 64, 57, 57] 0

• Conv2d-8 [35, 64, 57, 57] 36,864

• BatchNorm2d-9 [35, 64, 57, 57] 128

• ReLU-10 [35, 64, 57, 57] 0

• Conv2d-11 [35, 256, 57, 57] 16,384

• BatchNorm2d-12 [35, 256, 57, 57] 512

• Conv2d-13 [35, 256, 57, 57] 16,384

• BatchNorm2d-14 [35, 256, 57, 57] 512

• ReLU-15 [35, 256, 57, 57] 0

• Bottleneck-16 [35, 256, 57, 57] 0

• Conv2d-17 [35, 64, 57, 57] 16,384

• BatchNorm2d-18 [35, 64, 57, 57] 128

• ReLU-19 [35, 64, 57, 57] 0

• Conv2d-20 [35, 64, 57, 57] 36,864

• BatchNorm2d-21 [35, 64, 57, 57] 128

• ReLU-22 [35, 64, 57, 57] 0

• Conv2d-23 [35, 256, 57, 57] 16,384

• BatchNorm2d-24 [35, 256, 57, 57] 512

• ReLU-25 [35, 256, 57, 57] 0

• Bottleneck-26 [35, 256, 57, 57] 0

• Conv2d-27 [35, 64, 57, 57] 16,384

• BatchNorm2d-28 [35, 64, 57, 57] 128

• ReLU-29 [35, 64, 57, 57] 0

• Conv2d-30 [35, 64, 57, 57] 36,864

• BatchNorm2d-31 [35, 64, 57, 57] 128

• ReLU-32 [35, 64, 57, 57] 0

• Conv2d-33 [35, 256, 57, 57] 16,384

• BatchNorm2d-34 [35, 256, 57, 57] 512

• ReLU-35 [35, 256, 57, 57] 0

• Bottleneck-36 [35, 256, 57, 57] 0

• Conv2d-37 [35, 128, 57, 57] 32,768

• BatchNorm2d-38 [35, 128, 57, 57] 256

• ReLU-39 [35, 128, 57, 57] 0

• Conv2d-40 [35, 128, 29, 29] 147,456

• BatchNorm2d-41 [35, 128, 29, 29] 256

• ReLU-42 [35, 128, 29, 29] 0
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• Conv2d-43 [35, 512, 29, 29] 65,536

• BatchNorm2d-44 [35, 512, 29, 29] 1,024

• Conv2d-45 [35, 512, 29, 29] 131,072

• BatchNorm2d-46 [35, 512, 29, 29] 1,024

• ReLU-47 [35, 512, 29, 29] 0

• Bottleneck-48 [35, 512, 29, 29] 0

• Conv2d-49 [35, 128, 29, 29] 65,536

• BatchNorm2d-50 [35, 128, 29, 29] 256

• ReLU-51 [35, 128, 29, 29] 0

• Conv2d-52 [35, 128, 29, 29] 147,456

• BatchNorm2d-53 [35, 128, 29, 29] 256

• ReLU-54 [35, 128, 29, 29] 0

• Conv2d-55 [35, 512, 29, 29] 65,536

• BatchNorm2d-56 [35, 512, 29, 29] 1,024

• ReLU-57 [35, 512, 29, 29] 0

• Bottleneck-58 [35, 512, 29, 29] 0

• Conv2d-59 [35, 128, 29, 29] 65,536

• BatchNorm2d-60 [35, 128, 29, 29] 256

• ReLU-61 [35, 128, 29, 29] 0

• Conv2d-62 [35, 128, 29, 29] 147,456

• BatchNorm2d-63 [35, 128, 29, 29] 256

• ReLU-64 [35, 128, 29, 29] 0

• Conv2d-65 [35, 512, 29, 29] 65,536

• BatchNorm2d-66 [35, 512, 29, 29] 1,024

• ReLU-67 [35, 512, 29, 29] 0

• Bottleneck-68 [35, 512, 29, 29] 0

• Conv2d-69 [35, 128, 29, 29] 65,536

• BatchNorm2d-70 [35, 128, 29, 29] 256

• ReLU-71 [35, 128, 29, 29] 0

• Conv2d-72 [35, 128, 29, 29] 147,456

• BatchNorm2d-73 [35, 128, 29, 29] 256

• ReLU-74 [35, 128, 29, 29] 0

• Conv2d-75 [35, 512, 29, 29] 65,536

• BatchNorm2d-76 [35, 512, 29, 29] 1,024

• ReLU-77 [35, 512, 29, 29] 0

• Bottleneck-78 [35, 512, 29, 29] 0

• Conv2d-79 [35, 256, 29, 29] 131,072

• BatchNorm2d-80 [35, 256, 29, 29] 512

• ReLU-81 [35, 256, 29, 29] 0

• Conv2d-82 [35, 256, 15, 15] 589,824

• BatchNorm2d-83 [35, 256, 15, 15] 512

• ReLU-84 [35, 256, 15, 15] 0

• Conv2d-85 [35, 1024, 15, 15] 262,144

• BatchNorm2d-86 [35, 1024, 15, 15] 2,048

• Conv2d-87 [35, 1024, 15, 15] 524,288

• BatchNorm2d-88 [35, 1024, 15, 15] 2,048

• ReLU-89 [35, 1024, 15, 15] 0
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• Bottleneck-90 [35, 1024, 15, 15] 0

• Conv2d-91 [35, 256, 15, 15] 262,144

• BatchNorm2d-92 [35, 256, 15, 15] 512

• ReLU-93 [35, 256, 15, 15] 0

• Conv2d-94 [35, 256, 15, 15] 589,824

• BatchNorm2d-95 [35, 256, 15, 15] 512

• ReLU-96 [35, 256, 15, 15] 0

• Conv2d-97 [35, 1024, 15, 15] 262,144

• BatchNorm2d-98 [35, 1024, 15, 15] 2,048

• ReLU-99 [35, 1024, 15, 15] 0

• Bottleneck-100 [35, 1024, 15, 15] 0

• Conv2d-101 [35, 256, 15, 15] 262,144

• BatchNorm2d-102 [35, 256, 15, 15] 512

• ReLU-103 [35, 256, 15, 15] 0

• Conv2d-104 [35, 256, 15, 15] 589,824

• BatchNorm2d-105 [35, 256, 15, 15] 512

• ReLU-106 [35, 256, 15, 15] 0

• Conv2d-107 [35, 1024, 15, 15] 262,144

• BatchNorm2d-108 [35, 1024, 15, 15] 2,048

• ReLU-109 [35, 1024, 15, 15] 0

• Bottleneck-110 [35, 1024, 15, 15] 0

• Conv2d-111 [35, 256, 15, 15] 262,144

• BatchNorm2d-112 [35, 256, 15, 15] 512

• ReLU-113 [35, 256, 15, 15] 0

• Conv2d-114 [35, 256, 15, 15] 589,824

• BatchNorm2d-115 [35, 256, 15, 15] 512

• ReLU-116 [35, 256, 15, 15] 0

• Conv2d-117 [35, 1024, 15, 15] 262,144

• BatchNorm2d-118 [35, 1024, 15, 15] 2,048

• ReLU-119 [35, 1024, 15, 15] 0

• Bottleneck-120 [35, 1024, 15, 15] 0

• Conv2d-121 [35, 256, 15, 15] 262,144

• BatchNorm2d-122 [35, 256, 15, 15] 512

• ReLU-123 [35, 256, 15, 15] 0

• Conv2d-124 [35, 256, 15, 15] 589,824

• BatchNorm2d-125 [35, 256, 15, 15] 512

• ReLU-126 [35, 256, 15, 15] 0

• Conv2d-127 [35, 1024, 15, 15] 262,144

• BatchNorm2d-128 [35, 1024, 15, 15] 2,048

• ReLU-129 [35, 1024, 15, 15] 0

• Bottleneck-130 [35, 1024, 15, 15] 0

• Conv2d-131 [35, 256, 15, 15] 262,144

• BatchNorm2d-132 [35, 256, 15, 15] 512

• ReLU-133 [35, 256, 15, 15] 0

• Conv2d-134 [35, 256, 15, 15] 589,824

• BatchNorm2d-135 [35, 256, 15, 15] 512

• ReLU-136 [35, 256, 15, 15] 0
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• Conv2d-137 [35, 1024, 15, 15] 262,144

• BatchNorm2d-138 [35, 1024, 15, 15] 2,048

• ReLU-139 [35, 1024, 15, 15] 0

• Bottleneck-140 [35, 1024, 15, 15] 0

• Conv2d-141 [35, 512, 15, 15] 524,288

• BatchNorm2d-142 [35, 512, 15, 15] 1,024

• ReLU-143 [35, 512, 15, 15] 0

• Conv2d-144 [35, 512, 8, 8] 2,359,296

• BatchNorm2d-145 [35, 512, 8, 8] 1,024

• ReLU-146 [35, 512, 8, 8] 0

• Conv2d-147 [35, 2048, 8, 8] 1,048,576

• BatchNorm2d-148 [35, 2048, 8, 8] 4,096

• Conv2d-149 [35, 2048, 8, 8] 2,097,152

• BatchNorm2d-150 [35, 2048, 8, 8] 4,096

• ReLU-151 [35, 2048, 8, 8] 0

• Bottleneck-152 [35, 2048, 8, 8] 0

• Conv2d-153 [35, 512, 8, 8] 1,048,576

• BatchNorm2d-154 [35, 512, 8, 8] 1,024

• ReLU-155 [35, 512, 8, 8] 0

• Conv2d-156 [35, 512, 8, 8] 2,359,296

• BatchNorm2d-157 [35, 512, 8, 8] 1,024

• ReLU-158 [35, 512, 8, 8] 0

• Conv2d-159 [35, 2048, 8, 8] 1,048,576

• BatchNorm2d-160 [35, 2048, 8, 8] 4,096

• ReLU-161 [35, 2048, 8, 8] 0

• Bottleneck-162 [35, 2048, 8, 8] 0

• Conv2d-163 [35, 512, 8, 8] 1,048,576

• BatchNorm2d-164 [35, 512, 8, 8] 1,024

• ReLU-165 [35, 512, 8, 8] 0

• Conv2d-166 [35, 512, 8, 8] 2,359,296

• BatchNorm2d-167 [35, 512, 8, 8] 1,024

• ReLU-168 [35, 512, 8, 8] 0

• Conv2d-169 [35, 2048, 8, 8] 1,048,576

• BatchNorm2d-170 [35, 2048, 8, 8] 4,096

• ReLU-171 [35, 2048, 8, 8] 0

• Bottleneck-172 [35, 2048, 8, 8] 0

• Conv2d-173 [35, 1024, 8, 8] 2,097,152

• BatchNorm2d-174 [35, 1024, 8, 8] 2,048

• Conv2d-175 [35, 512, 8, 8] 4,719,104

• Conv2d-176 [35, 512, 8, 8] 3,146,240

• Conv2d-177 [35, 512, 8, 8] 3,146,240

• Conv2d-178 [35, 512, 8, 8] 2,097,664

• Conv2d-179 [35, 512, 8, 8] 4,719,104

• Conv2d-180 [35, 512, 8, 8] 3,146,240

• Conv2d-181 [35, 512, 8, 8] 3,146,240

• Conv2d-182 [35, 512, 8, 8] 2,097,664

• BatchNorm2d-183 [35, 512, 16, 16] 1,024
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• ReLU-184 [35, 512, 16, 16] 0

• Conv2d-185 [35, 512, 16, 16] 2,359,808

• BatchNorm2d-186 [35, 512, 16, 16] 1,024

• BatchNorm2d-187 [35, 512, 16, 16] 1,024

• ReLU-188 [35, 512, 16, 16] 0

• UpProject-189 [35, 512, 16, 16] 0

• Conv2d-190 [35, 256, 16, 16] 1,179,904

• Conv2d-191 [35, 256, 16, 16] 786,688

• Conv2d-192 [35, 256, 16, 16] 786,688

• Conv2d-193 [35, 256, 16, 16] 524,544

• Conv2d-194 [35, 256, 16, 16] 1,179,904

• Conv2d-195 [35, 256, 16, 16] 786,688

• Conv2d-196 [35, 256, 16, 16] 786,688

• Conv2d-197 [35, 256, 16, 16] 524,544

• BatchNorm2d-198 [35, 256, 32, 32] 512

• ReLU-199 [35, 256, 32, 32] 0

• Conv2d-200 [35, 256, 32, 32] 590,080

• BatchNorm2d-201 [35, 256, 32, 32] 512

• BatchNorm2d-202 [35, 256, 32, 32] 512

• ReLU-203 [35, 256, 32, 32] 0

• UpProject-204 [35, 256, 32, 32] 0

• Conv2d-205 [35, 128, 32, 32] 295,040

• Conv2d-206 [35, 128, 32, 32] 196,736

• Conv2d-207 [35, 128, 32, 32] 196,736

• Conv2d-208 [35, 128, 32, 32] 131,200

• Conv2d-209 [35, 128, 32, 32] 295,040

• Conv2d-210 [35, 128, 32, 32] 196,736

• Conv2d-211 [35, 128, 32, 32] 196,736

• Conv2d-212 [35, 128, 32, 32] 131,200

• BatchNorm2d-213 [35, 128, 64, 64] 256

• ReLU-214 [35, 128, 64, 64] 0

• Conv2d-215 [35, 128, 64, 64] 147,584

• BatchNorm2d-216 [35, 128, 64, 64] 256

• BatchNorm2d-217 [35, 128, 64, 64] 256

• ReLU-218 [35, 128, 64, 64] 0

• UpProject-219 [35, 128, 64, 64] 0

• Conv2d-220 [35, 64, 64, 64] 73,792

• Conv2d-221 [35, 64, 64, 64] 49,216

• Conv2d-222 [35, 64, 64, 64] 49,216

• Conv2d-223 [35, 64, 64, 64] 32,832

• Conv2d-224 [35, 64, 64, 64] 73,792

• Conv2d-225 [35, 64, 64, 64] 49,216

• Conv2d-226 [35, 64, 64, 64] 49,216

• Conv2d-227 [35, 64, 64, 64] 32,832

• BatchNorm2d-228 [35, 64, 128, 128] 128

• ReLU-229 [35, 64, 128, 128] 0

• Conv2d-230 [35, 64, 128, 128] 36,928
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• BatchNorm2d-231 [35, 64, 128, 128] 128

• BatchNorm2d-232 [35, 64, 128, 128] 128

• ReLU-233 [35, 64, 128, 128] 0

• UpProject-234 [35, 64, 128, 128] 0

• Dropout2d-235 [35, 64, 128, 128] 0

• Conv2d-236 [35, 1, 128, 128] 577

• ReLU-237 [35, 1, 128, 128] 0

• Upsample-238 [35, 1, 228, 228] 0

Total params: 63,565,377 Trainable params: 63,565,377 Non-trainable params: 0

Input size (MB): 6.94 Forward/backward pass size (MB): 15892.93 Params size (MB): 242.48 Estimated Total
Size (MB): 16142.35

Related work

Sensors based: The traditional methods of estimation of the depth of any object from a single point is done
through various methods like laser scanning and various sensors like sonar, radar, IR etc.,

Stereo Vision The concept of Triangularization with stereoscopic vision cameras was one of the well-known
methods of estimating the depth with two or more cameras and their spatial coordinates

Analytical methods:

Depth from focus variations: This method involves the capturing of the same scene with different focal
distances. The problem is solved analytically with cues and estimated depth based on a variety of blur models,
such as the Ring Difference Filter like work of J. Surh.et.al [7]

Depth from defocus cues: Previous method allows for camera parameters to change for eg., changing the lens
to vary the focal length. But this method is used in the constraint where camera parameters are not allowed to
change. Zhuo et al. [8] for eg, estimated the amount of spatially varying defocus blur at edge locations.
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