
Counting Cars in Low-Resolution Overhead Imagery Using a
Convolutional Model

Kyle Nguyen
Department of Computer Science

Stanford University
kylen@stanford.edu

Atindra Jha
Department of Computer Science

Stanford University
atj10@stanford.edu

Andrew Conkey
Department of Economics

Stanford University
aconkey@stanford.edu

December 3, 2021

Abstract
Previous work has shown that various convolutional neural network (CNN) and CNN + feature

pyramid network (FPN) techniques can achieve high performance on the task of counting cars in
high-resolution overhead imagery. However, there is a notable gap in the literature when it comes to
counting cars in lower-resolution overhead imagery, which includes most low-cost high-frequency satellite
imagery currently available. In this paper, we artificially blur images sourced from the Cars Overhead
With Context (COWC) dataset to construct several labelled low-resolution datasets. On these datasets,
we train a variety of car-counting models, using the AlexNet, ResNet-18, and ResNet-50 architectures.
We observe relatively low out-of-sample performance and significant overfitting in all three models,
which we attempt to combat with dropout and L2 regularization. Ultimately, our models should be
applicable to purposes for which approximate car counts are sufficient, but more work is needed to
combat the overfitting issues that we encountered for use-cases where higher accuracies are needed.

1 Introduction
The ability to count cars in high-frequency overhead satellite imagery can significantly enhance the efforts of
governments, researchers, and other parties to analyze live trends in traffic, pollution levels, and emissions.
Car counting models also hold value for researchers seeking to use car counts as inputs in tackling other
problems, such as tracking economic activity [7] or predicting stock prices of retail chains [2, 14].

A number of models have already been developed to count cars from overhead imagery with significant
success [1, 3, 7, 12, 16]. However, these models typically rely on high resolution imagery in which cars are
clearly distinguishable, typically using satellite resolution in the range of 15-30 cm per-pixel resolution at
ground. In contrast, available low-cost high-frequency satellite imagery is of significantly lower resolutions–
Planet Labs’ daily non-commissioned satellite imagery delivers a 3 m per pixel resolution, while the highest
resolution band of NASA’s Landsat 8 satellite is only 15 m per pixel [8, 17]. At such resolutions, most cars
are represented by only one pixel or less, making even human-level car counting performance extremely
poor. While higher-resolution imagery can be commissioned, doing so is extremely expensive and infeasible
for those working on a limited budget.

Our project thus focuses on the novel problem of counting cars in progressively lower resolution overhead
imagery. To create our datasets, we artificially blur a set of publicly available labelled high-resolution
overhead images containing cars. Subsequently, we test a variety of model architectures on the resulting
datasets to assess performance and sensitivity to image blurring.

1



2 Related work
The task of car counting is part of a larger body of work related to small-object detection in satellite
imagery. Previous work on the car counting task can generally be divided into two different approaches:
1) convolutional neural network (CNN) based approaches and 2) CNN + feature pyramid network (FPN)
approaches. The latter is particularly popular, with many papers [1, 3, 7] working off of a modified
RetinaNet [11] with virtually all papers achieving high accuracy on the car counting task. However, while
the task of car counting has been approached from many angles for high-resolution satellite imagery and
even low-resolution non-satellite imagery [4], we notice that relatively few papers explore the performance
of either CNN or CNN + FPN approaches on car counting in lower resolution satellite data, which we
explore in this paper.

Our approach to car counting in this paper follows most closely the work by Mundhenk et al. (2016)
[12], who also publish the dataset that we use and describe in the Dataset section. This paper provides
benchmark performance on the car counting task for popular purely-CNN based models such as AlexNet
[10] and Inception on this dataset. We replicate the performance metrics reported by Mundhenk et al., but
we also note weaknesses regarding the dataset’s bias towards 0-label examples and attempt to remedy these
in our approach. In addition, we expand further upon previous work by exploring the task of car counting
in low-resolution imagery.

3 Dataset and Features

3.1 Dataset
For our dataset, we use high-resolution satellite images of locations with cars from the Cars Overhead with
Context (COWC) dataset provided by the Lawrence Livermore National Laboratory (LLNL) [13]. COWC
is a large dataset of 32,716 unique annotated cars from the overhead from six distinct locations: Toronto,
Canada; Selwyn, New Zealand; Potsdam and Vaihingen, Germany; Ohio and Utah, United States. The
images were taken at a satellite resolution of 15 cm, meaning cars are roughly 20 pixels across in the images.
Images from Vaihingen and Ohio were only available in grayscale and were therefore omitted from our data
set.

Our first task is to replicate the benchmark performance achieved on the COWC dataset by Mundhenk
et al. (2016). Following the example of this paper, we begin by writing a Python script to slice all images
into 256x256 pixel sub-images yielding a total of 31,437 images.

Each image in the COWC dataset is annotated via a corresponding PNG image containing a single-pixel
dot at the center of each car in the image. The slicing ensures that each annotation dot is only contained in
one sliced image. However, it does not ensure that the car would not visually be split into multiple images.
To avoid this, following Mundhenk et al. (2016), our Python script adds a gray 32-pixel border to each of
the sliced images. In addition, we only consider cars whose annotation dots are located at least 8-pixels
inside the visible portion of the image. After this process, a total of 15,073 cars are observed across all
sliced images.

Location # of sliced images Total # of annotated cars Avg. cars per image
Toronto, CA 3828 4554 1.1897
Selwyn, NZ 13440 559 0.0416

Potsdam, DE 832 778 0.9351
Utah, US 13337 9182 0.6885
Total 31437 15073 0.4795

Of the 31,437 data points, nearly 85% (26,999 data points) were annotated as having 0 cars. Since the
data skewed heavily towards images with no cars in them, we undersampled by randomly selecting 1000 of
the 26,999 0-annotated images and retaining them, while discarding the rest of the images with 0 cars in
them. This resulted in a second dataset with 5,438 images. Note that since we only removed images with 0
cars, we still have a total of 15,073 annotated cars in the undersampled dataset.

2



Location # of sliced images Total # of annotated cars Avg. cars per image
Toronto, CA 1603 4554 2.8409
Selwyn, NZ 832 559 0.6719

Potsdam, DE 303 778 2.5677
Utah, US 2700 9182 3.4007
Total 5438 15073 2.7718

3.2 Blurring
In addition to the 5,438-image unblurred image dataset, we write a Python script to create two additional
datasets of the same images but with a blur factor of 2 or 4. We blur images in two stages. First, we use
nearest-neighbor interpolation to reduce an image’s size by a constant factor (either 2 or 4). Then, we
rescale, again using nearest-neighbor interpolation, to restore the image to its original size.

Figure 1. A typical training example unblurred, 2x blurred, and 4x blurred, left to right.

For the blurred images, we then use the same slicing and border process as for the unblurred images. The
32-pixel gray border is applied after the blurring process and therefore remains unblurred. After image
processing, we are left with a total of 4 datasets of sliced and framed images:

1. The initial dataset with 31,437 unblurred images.

2. The undersampled dataset with 5,438 unblurred images.

3. The 5,438-image dataset blurred by a factor of 2 (low-blur).

4. The 5,438-image dataset blurred by a factor of 4 (high-blur).

4 Methods
We begin by training a few baseline models on the original dataset of 31,437 unblurred images to compare
benchmark performance on the car counting task. We implement all of the following models using PyTorch
[15]. For the baseline model, we use transfer learning on the AlexNet [10] architecture trained on ImageNet.
We replace AlexNet’s original 1000-class softmax output with a 50-class softmax output, where each class
corresponds to a discrete car count. The maximum number of cars that can be observed in a single training
image is 47. Inspired by the model of Mundhenk et al. (2016), we round this up and use 50 output classes
to allow for the possibility of generalizing to future data that may include more than 47 cars.

In addition to AlexNet, we train a ResNet18 and ResNet50 [5] with the same setup. For all architectures,
learning is conducted via an Adam optimizer [9] for 50 epochs with a batch size of 64. Since we use a
softmax output layer and essentially treat this as a 50-class classification problem, we use cross-entropy loss
to minimize the distance between the predicted probability and the true class label.

L(y, ŷ) = − 1

m

m∑
i=1

yilog(ŷi)

Formula 1. Cross-entropy loss formula. yi is a 50-dimensional one-hot vector representing the true car
count in an image.

3



We use a weight-decay parameter of 0.0001 and a learning rate of 0.0001 as these are commonly-cited
values in computer vision literature. For all training, we use a 80% train, 10% dev, 10% test split.

As discussed later in Results, we achieve high accuracy and low loss numbers, close to what is reported
by Mundhenk et al. (2016), on all models using this dataset. However, as mentioned in the Dataset section
of this paper, we find that nearly 85% of the 31,437 data points were annotated as having 0 cars. We suggest
that this imbalance of car counts in the dataset artificially boosted the performance of our models as well
as possibly of the models used in Mundhenk et al. (2016). Since models try to reduce classification errors
across the entire dataset, it is preferable for the training set to not have high class imbalance. Therefore, we
train, validate, and test all three of our aforementioned models independently using the new undersampled
dataset with 5,438 unblurred images.

All three of our models overfit the undersampled training set to differing degrees, resulting in high
variance. We therefore attempt to enhance the regularization of our best-performing model, ResNet18 with
a 50-class softmax output by 1) adding dropout with a p of 0.5 right before the fully connected layer; and
2) testing a range of values for the weight decay parameter of the Adam optimizer in order to gradually
increase L-2 regularization. Specifically, we test values between 10−2 to 10−4, incrementing the exponent
by intervals of 0.25. Our results indicate that 10−2.5 is the optimal weight decay value for our model for
counting cars in unblurred images based on dev set performance.

Moving on to blurred images, we train, validate, and test our two blurred image datasets (2x blur as well
as 4x blur) with 5,438 data points each using our modified ResNet18 convolutional neural network (with
dropout and a 50-class output layer). We, again, test a range of different weight decay values across different
levels of blurring to ensure that our model has been fine-tuned to perform optimally on the low-blur as well
as the high-blur car counting tasks. We note that the model performed best on 2x blurred overhead imagery
with a weight decay value of 10−2.75 and on the 4x blurred imagery with a weight decay value of 10−3.75. It
makes intuitive sense that prediction on lower-resolution imagery would be most accurate with a smaller
weight decay hyperparameter, since blurred images contain fewer features which itself reduces overfitting.

5 Results and Discussion
As noted Table 1, we achieve very high performance for each of our three models with the initial dataset
of 31,437 unblurred images. The numbers are in line with the performance of the models mentioned in
Mundhenk et al. (2016). However, we believe that the high-performance numbers achieved by Mundhenk
et al. (2016) as well as by our models were a result of the high class imbalance (heavily favouring 0-label
examples) in the dataset, leading to significantly worse average car-count precision during classification of
images with one or more cars in them.

Table 1. Test performance metrics of AlexNet, ResNet18, and ResNet50 on the 31,437 unblurred image dataset. MAE is
Mean Absolute Error. RMSE is Root Mean Squared Error. Proposal is the accuracy with which a model classifies an image as
having at least one car or not.

Model Accuracy Accuracy (±1) Accuracy (±2) Average Loss MAE RMSE Proposal
AlexNet 89.4% 96.0% 97.7% 0.005546 0.204517 0.890828 94.9%
ResNet18 91.3% 96.9% 98.4% 0.004635 0.178753 1.046319 96.5%
ResNet50 90.9% 97.1% 98.6% 0.004176 0.156170 0.677942 97.3%

Our downsampled dataset of 5,438 unblurred images gives us the following results (Table 2) when run on
the three baseline models of AlexNet, ResNet18, ResNet50.

Table 2. Test performance metrics on the 5,438 unblurred image dataset.

Model Accuracy Accuracy (±1) Accuracy (±2) Average Loss MAE RMSE Proposal
AlexNet 41.5% 79.8% 89.7% 0.037740 1.090074 2.278012 94.9%
ResNet18 55.9% 84.9% 93.2% 0.032278 0.750000 1.452685 96.3%
ResNet50 57.9% 82.4% 91.4% 0.043241 0.889706 2.065116 92.5

These results are more representative of the actual performance of the models since the classes are relatively
less imbalanced in our modified undersampled data set. As expected, we observe relatively higher losses
and lower accuracies across the board as a consequence of our data set modification, since the task becomes

4



harder with the skew towards 0-label images removed. The differences between the performance of each
model were also more pronounced thanks to the aforementioned resampling. We observe high overfitting
in our models. To remedy this, we choose to further modify our ResNet18 to add a dropout layer and
try out a range of weight decay values to achieve optimal performance. Key performance metrics of the
ResNet18 with dropout and various weight decay values on the unblurred, low-blur, and high-blur datasets
can be seen in Appendix 8.3.1–3. A summary of the best-performing models (as selected by comparing
exact accuracy on the dev set) can be seen below.

Table 3. Test performance of the ResNet18 with Dropout regularization added, selected by the best-performing weight decay
(WD) parameter of the Adam optimizer, across all blur levels.

Dataset Optimal WD Accuracy Accuracy (±1) Accuracy (±2) Average Loss MAE RMSE Proposal
Unblurred 10−2.5 60.1% 86.0% 93.9% 0.021848 0.806985 2.094724 96.3%
Low-blur (x2) 10−2.75 57.7% 82.0% 91.9% 0.030398 0.900735 2.194579 93.9%
High-blur (x4) 10−3.75 56.6% 84.9% 92.8% 0.035743 0.790441 1.735232 94.7%

With a combination of dropout regularization and fine-tuning the weight decay parameter, we were able
to achieve slightly better test performance on the unblurred dataset (60.1% accuracy as compared to 55.9%
accuracy in the unregularized model using 10−4 weight decay and no dropout). As expected, even when
selecting the best model, accuracy falls as blur level increases, though even at the highest blur level, we
were still able to achieve 56.6% exact accuracy. All models achieved ±1 accuracy > 80% and ±2 accuracy
> 90% after fine-tuning.

6 Conclusion and Future Work
Unfortunately, we encountered significant overfitting issues in the training of our models. While introducing
dropout and more severe weight decay lead to improvements in out-of-sample performance, the resulting
models were still not sufficiently accurate to reach human-level performance on calculating exact car counts.
However, our ±1 and ±2 accuracy rates are strong, meaning that our models still hold value in contexts
where exact prediction is unnecessary. In use-cases such as traffic or economic activity prediction, which
involve counting cars in contexts in which many are present, less than perfect accuracy is not a significant
issue.

To attempt to further reduce overfitting, future work might involve running less complex models (such
as an even shallower ResNet). Some past work was also able to achieve much higher accuracy by first
training an object localization model and then using those results to calculate counts [1]. We chose not
to take this approach, thinking it would be more effective (especially in the blurred datasets) to directly
estimate our variable of interest and hoping to avoid severe computational constraints. However, changing
to an object localization approach would likely significantly reduce overfitting, since object localization
output is more complex than object counting output. Due to the performance issues we encountered even
in the high resolution case, we did not move onto even lower resolutions such as 16x blurring, which would
have more accurately reflected the type of images found in, for example, the Planet Labs dataset [8].

Had we successfully trained a model with near-perfect accuracy on high-resolution imagery, we would
have used it to label an external, unlabelled dataset of parking lot satellite images that we scraped from
OpenStreetMap and Google Maps (see code). This would have allowed us to significantly expand our
training set for the blurred image models without need for manual labelling by blurring the newly labelled,
larger dataset. This data augmentation technique was at the core of our initial strategy, and we still believe
it would be an effective way to improve future models seeking to predict car counts from lower-resolution
imagery.

5



7 Contributions
All group members were involved in driving the overall direction of the project. Each group member
conducted literature review and contributed to enhancing the models. Further specific responsibilities are
outlined below.
Kyle

• Python scripting for data processing (slicing, blurring)

• General Pytorch scripting for model optimization

• AWS environment setup and cloud management

Atindra

• Pytorch scripting, implementing the softmax classifier skeleton and train/test loop functionality.

• Implementing pretrained AlexNet/ResNet models

• Implementing regularization techniques (Dropout, weight decay)

Andrew

• Portion of blurring code

• Sequential looping for model training

• Hyperparameter optimization

References
[1] Arthur Douillard. “Detecting Cars from Aerial Imagery for the NATO Innovation Challenge.” Arthur

Douillard, 21 June 2018, https://arthurdouillard.com/post/nato-challenge/.

[2] Counts, Laura. “How Hedge Funds Use Satellite Images to Beat Wall Street-and Main Street: Haas News:
Berkeley Haas.” Haas News | Berkeley Haas, 21 Nov. 2019, https://newsroom.haas.berkeley.edu/how-
hedge-funds-use-satellite-images-to-beat-wall-street-and-main-street/.

[3] Gao, Peng, et al. “Vehicle Detection with Bottom Enhanced RetinaNet in Aerial Images.”
IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020,
https://doi.org/10.1109/igarss39084.2020.9323216.

[4] Hardjono, Benny, et al. “Vehicle Counting Evaluation on Low-Resolution Images Using Software Tools.”
Proceedings of the 9th International Conference on Information Communication and Management, 2019,
https://doi.org/10.1145/3357419.3357453.

[5] He, Kaiming, et al. “Deep Residual Learning for Image Recognition.” 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, https://doi.org/10.1109/cvpr.2016.90.

[6] Hendrycks, Dan, et al. “Using Pre-Training Can Improve Model Robustness and Uncertainty.” ArXiv.org,
20 Oct. 2019, https://arxiv.org/abs/1901.09960.

[7] Hill, Cole. “Automatic Detection of Vehicles in Satellite Images for Economic Monitoring.” Digital
Commons @ University of South Florida, https://digitalcommons.usf.edu/etd/8792/.

[8] “Homepage.” Planet, https://www.planet.com/.

[9] Kingma, Diederik P., and Jimmy Ba. “Adam: A Method for Stochastic Optimization.” ArXiv.org, 30
Jan. 2017, https://arxiv.org/abs/1412.6980.

6



[10] Krizhevsky, Alex, et al. “ImageNet Classification with Deep Convolutional Neural Networks.” Commu-
nications of the ACM, vol. 60, no. 6, 2017, pp. 84–90., https://doi.org/10.1145/3065386.

[11] Lin, Tsung-Yi, et al. “Focal Loss for Dense Object Detection.” 2017 IEEE International Conference on
Computer Vision (ICCV), 2017, https://doi.org/10.1109/iccv.2017.324.

[12] Mundhenk, T. Nathan, et al. “A Large Contextual Dataset for Classification, Detection and
Counting of Cars with Deep Learning.” Computer Vision – ECCV 2016, 2016, pp. 785–800.,
https://doi.org/10.1007/978-3-319-46487-9_48.

[13] Mundhenk, T. Nathan. “Cars Overhead with Context Dataset at LLNL.” gdo152.Llnl.gov,
https://gdo152.llnl.gov/cowc/.

[14] Partnoy, Frank. “Stock Picks from Space.” The Atlantic, Atlantic Media Company,
23 Apr. 2019, https://www.theatlantic.com/magazine/archive/2019/05/stock-value-satellite-images-
investing/586009/.

[15] Paszke, Adam, et al. “Pytorch: An Imperative Style, High-Performance Deep Learning Library.”
ArXiv.org, 3 Dec. 2019, https://arxiv.org/abs/1912.01703.

[16] Tayara, Hilal, et al. “Vehicle Detection and Counting in High-Resolution Aerial Images Us-
ing Convolutional Regression Neural Network.” IEEE Access, vol. 6, 2018, pp. 2220–2230.,
https://doi.org/10.1109/access.2017.2782260.

[17] What Are the Band Designations for the Landsat Satellites?, https://www.usgs.gov/faqs/what-are-
band-designations-landsat-satellites?qt-news_science_products=0qt-news_science_products.

7



8 Appendix

8.1 Classification accuracy across varying weight decay values

From left to right, these graphs show (exact) accuracy on the unblurred, 2x blurred, and 4x blurred datasets
across different weight decay parameter values. We observe a slight decay in performance as blurring
increases.

8.2 Average loss across weight decay values

From left to right, these graphs show average loss on the unblurred, 2x blurred, and 4x blurred datasets
across different weight decay parameter values. We observe a slight decay in performance as blurring
increases.

8.3 Overall test performance metrics
8.3.1 Unblurred dataset

8



8.3.2 Low-blur (x2) dataset

8.3.3 High-blur (x4) dataset

9


	Introduction
	Related work
	Dataset and Features
	Dataset
	Blurring

	 Methods 
	Results and Discussion
	Conclusion and Future Work
	Contributions
	Appendix
	Classification accuracy across varying weight decay values
	Average loss across weight decay values
	Overall test performance metrics
	Unblurred dataset
	Low-blur (x2) dataset
	High-blur (x4) dataset



