Pet Breed Classification on Altered Images

Anthony Xie Jake Lee

anthonyx@stanford.edu lakejee@stanford.edu

Kantapong Kotchum
kkotchum@stanford.edu

Abstract

Our project attempts to classify cats and dogs by breed in unusual settings: given
corrupted images, can our model still infer the breed which the animal in the scene
belongs to? We approach this task with four models: k-nearest neighbor, CNN,
CNN with residual network, and transfer learning. Our evaluation metric shows
that k-nearest neighbor achieves the best accuracy score of 98.34% on validation
dataset while CNN with ResNet achieves the best accuracy score of 35.4%. The
poor accuracy score of CNN’s can be attributed to a variety of factors within the
data and model architecture. Nonetheless, transfer learning method seems to be the
most promising method as it avoids overfitting problem found in other models.

1 Introduction

Image classification is one of the central problems in Computer Vision. The type of classification that
we are focusing on in particular is the identification of the breed of a dog or a cat in a picture. Recent
SOTA models such as EffNet-L2 [1], BiT-L [2], and EfficientNet-B7 [3] achieve an accuracy rate of
over 95% on the Oxford-IIIT Pets dataset. This dataset, however, has a limitation in that all the images
presented are fine-grained. We propose that instead of training the models on ideal datasets, we
intentionally alter the images such that some areas are obfuscated, blurred, or gray-scaled. We hope
to explore various non CNN models, experimenting our own CNN models, as well as implementing a
transfer learning on some of these SOTA models.

2 Related Work

This project uses the Oxford-IIIT Pet Dataset [4] which was first used by Ekin D. Cubuk et al in their
paper AutoAugment: Learning Augmentation Policies from Data [5]. Using a search algorithm to find
the best policy such that the neural network yields the highest validation accuracy on a target dataset,
they attained a Top-1 accuracy of 83.5%. Pierre Foret et al use Sharpness-Aware Minimization (SAM)
to seek parameters that lie in neighborhoods having uniformly low loss. Their research shows that
SAM improves model generalization across a variety of datasets, one of them being the Oxford-IIIT
Pet Dataset. Since CNNs are commonly developed at a fixed resource budget, Mingxing Tan and
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Quoc V. Le systematically study model scaling and identify that carefully balancing network depth,
width, and resolution via a scaling method called EfficientNet, which is 8.4 times smaller and 6.1
times faster on inference than the best existing CNN.

3 Dataset and Preprocessing

3.1 Dataset

We used the Oxford-IIIT Pet Dataset (Omkar M Parkhi and Andrea Vedaldi and Andrew Zisserman
and C. V. Jawahar) [4]. Our pet training dataset consists of 7349 images of varying dimensions, and
each image has an associated ground truth annotation of breed, head ROI, and pixel level trimap
segmentation. There are 37 categories (breeds) of cats and dogs, each breed having around 200
images. A more detailed breakdown is provided as Figure 4 in the Appendix Section.

3.2 Preprocessing

The objective of our project is image classification, so the associated ground truth labels, head ROI,
and trimap segmentations are disregarded. The 7349 images have a large variation in scale, pose
and lighting, and not pre-split into training/validating/testing sets. For standardization, we set the
height and width of each image to be 256 pixels and use the linear interpolation technique to compute
the new RGB value for each pixel in our newly-generated images. We then run 3 different data
augmentation methods to generate new data to help our model better generalize: grayscale, gaussian
blur, and salt-and-pepper noise. An explanation on how each method works is provided in the
Appendix. After preprocessing, we arrive at a total of 29536 images, with a small number of images
being lost due to file corruption. Since there is no training, validating, testing label for the original
dataset, we use 90:10 split ratio for training/validating.

4 Evaluation Metrics

Our objective is to classify an image into 37 classes. Suppose there are N data samples where the i-th
sample is (V) y(*)) such that () € R? and y» € {1,2,...,37}, and our model predicts the class
the sample belongs as §(*). Our evaluation metric is validation accuracy which, for our k-nearest
neighbor model and CNN-based models, is computed as follows

For k-nearest neighbor, (") € {1,2,...,37}. The accuracy in training and testing will be computed
based on how many data points are correctly assigned to the label of their clusters. That is,

Accuracy = % Zfil 1[5 = @]

For CNN-based models, (") € [0, 1]37 where each entry in the vector represents the probability that
z( belongs to that index (1-indexing). The accuracy in training and testing will be computed based
on how many data points are correctly assigned to their true label, where the assignment is the index
with the highest probability. That is,

Accuracy = % Zi\;l l[argmax(y(i)) — y(i)]
Our model also computes cross-entropy loss, which is
Loss = — vazl Z?L log (9@ [y™])

We note that §(9)[y()] = P(2(?), y(?) is the probability that our model predicts () belongs to the
actual class y(*).



5 Methodology and Result

5.1 [Initial test: K-nearest neighbor

While our focus within this project is centered around CNN'’s, we decided to experiment with K-
nearest neighbor, which is a parametric and unsupervised machine learning algorithm. Each image
(256 * 256 * 3) is flattened into a 196608 dimensional numpy array, and we use Euclidean Distance
as a metric. We vary the number of neighbors k£ from k = 2,5, 10, 25, 100, 200, 500. The table of
training and validating accuracy is provided here:

k (number of neighbors) Training Accuracy Validating Accuracy
2 99.75 98.34
5 98.27 87.54
10 84.04 52.91
25 44.12 27.83
100 20.01 16.22
200 15.85 13.27
500 12.05 10.39

Figure 1: Accuracy of k Nearest Neighbor

The training/validating accuracy is extremely high for small number of neighbors, with & = 2
achieving 99.75% training accuracy and 98.34% validating accuracy.

5.2 Baseline Model: Multi-layer CNN Model

We began by coding a CNN model using Keras as our baseline model. Our current model is designed
such that it consists of three main layers. In each layer, the input is sequentially

* fed into a 2D convolution layer with filter size 3 x 3, stride 1, and no padding
* fed into a batch normalization layer

* fed into a max pooling layer with filter size 2 x 2

* fed into a dropout layer

We use ReLLU activation for all of the layers. The input to the first layer is the image that we want to
train or test. The output from a dropout layer in the third main layer is then flattened and fed into
a softmax activation layer with 37 classes. We train our model on only the original dataset (7349
images) and a full-sized dataset (29536 images).

Training - Loss Function Train - Accuracy Training - Loss Function Train - Accuracy
— Loss 10
Validatien Loss.

2
02
— Accuracy
Validation Accuracy

0 0 0 60 0 20 40 60 0 10 0 EY ) 0 10 0 E )

(a) Data Subset (b) Full Dataset

Figure 2: Loss and Accuracy of Multi-layered CNN

In a smaller dataset, we achieved a 99.4% training accuracy and 21.4% validating accuracy. When
running on our full dataset, we had similar results: 99.2% training accuracy and a maximum validating
accuracy of 20.4%.



These graphs showcase clearly that our model has incredibly high bias (high training accuracy but
low validation accuracy), and is overfit to the training data. We can assume that the cause was also
most likely our model architecture as opposed to the size/construction of the dataset, since increasing
the dataset had little to no effect on the end validation accuracy result.

5.3 Single-layer CNN Model

Since we understood that our model architecture was too complex and overfit to the training data,
we attempted to reduce the complexity of our architecture by reducing our CNN model from three
main layers to just a single layer, and trained it again on our full dataset. Going from 3 Conv2D
layers to just 1, we were able to reduce the number of trainable parameters from around 7.4M to
2.6M. We found however that this still did not reduce the issue of high bias, and this model was
even less effective, as after training the model showed a 84.8% training accuracy and a maximum
validating accuracy of 12.1%. While it is possible that retraining the model with additional epochs
may have alleviated some part of the low accuracies, we believe that regardless of the epoch number
the primary issue of low validation accuracy would not have been fixed. In addition, we tested other
hyperparameter values for batch size, optimizer, and dropout rate, and found that very little changed.

5.4 CNN with Residual Blocks

Again in an effort to reduce the high bias of our model, we decided to implement residual blocks into
our CNN model. Residual blocks allow for learned weights in previous layers to be reused in future
layers. In this case we will do this by adding the result of our previous layer to the result of our next
layer, and performing the activation on it. See Figure 5 in the Appendix for a diagram of a unit of
residual block.

For our CNN model we will use a series of a single convolutional block followed by multiple identity
blocks. Within each block there are 3 Conv2D layers, in addition to a skip connection. The identity
block only does batch norm within the skip connection, keeping the dimensions the exact same,
whereas the convolutional block does an additional Conv2D filter in addition to batch norm in the
skip connection. Using these principles we constructed a CNN which after passing the image through
an initial Conv2D layer, passes it through 3 stages of convolution and identity block sets, with an
increasing number of filters at each stage. Overall, the model totals 5.9M trainable parameters (See
Figure 6 in Appendix Section for full architecture)
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Figure 3: (Loss and Accuracy of CNN Model w/ Residual Blocks)

After training this residual block CNN model, we found our overfitting issues to still be present, with
the training accuracy far exceeding the validation accuracy. However, the validation accuracy in
this model was able to outperform the previous two models that we had coded, with a maximum
validation accuracy of 35.4%.



5.5 CNN w/ Transfer Learning

The final model that we utilized was to leverage existing CNN ResNet models in order to bolster the
accuracy of our own. We use ResNet50 model with pretrained weights from ImageNet and freeze all
but the last 15 layers. We then add 3 main layers (each main layer consists of a dense layer, a dropout
layer, and a batch normalization layer) and a final softmax activation layer with 37 classes. While
due to technical issues we were unable to finish running the training for this model, we could see that
through each epochs both the training and validation accuracy increased at around the same rate and
the overfitting issue did not seem to be present. That is, at epoch 10 we saw the training accuracy to
be around 17% and validation accuracy of around 14%. This generalizes significantly better than our
other models, all of which had a difference of >50% between training and validation accuracy before
the 10th epoch.

6 Analysis and Future Work

Given the results of the different models that we have tested and trained, we believe we can identify a
few key causes the performace of KNN and CNN-based models.

For KNN, a small number of neighbors results in an extremely large accuracy for both training and
validating dataset because of the way we augment the data. That is, our generated images resemble
the original images, only varying slightly for some pixels (See Appendix, Figure 7).

With small number of neighbors, it is very likely that any image will be mapped to its augmented
version, hence high accuracy score. As the number of neighbor increases, KNN performs poorer than
the CNN-based model, which is explainable due to the high dimension of the input and how KNN
does not learn the relationship among nearby pixels (the model only computes Euclidean distance
directly, pixel-by-pixel).

As for CNN-based model and its low performance, we speculate that even with augmented data we
still do not have enough images for each class. After preprocessing, each class still has less than
1000 images which helps explain why the model overfits within a few epochs of training. This is also
compounded with the fact that for a majority of our models we were training our models from scratch
with only our provided data rather than leveraging existing pre-trained weights, therefore our models
will struggle to generalize well, especially considering that our augmented data retains many of the
same elements as the original data and doesn’t differentiate nearly as much as a new image.

Our suggestion for future work is to
1. leverage the power of transfer learning, since most SOTA models like ResNet50 were trained
on a much larger sample size of dataset, resulting in better generalization

2. increase the number of data. One method is to find more image processing techniques to
augment our dataset such as obfuscation, rotation, or color masking. Another method is to
webscrape images of cats and dogs and manually label them.

7 Contributions

* Anthony: Data preprocessing/augmentation coding, coded + trained multi-layered, single-
layered, and residual block CNNs, project writeup, video script

» Jake: Data preprocessing/augmentation coding, project writeup, poster creation, video
script



* Mark: Data downloading, basic CNN and residual block CNN model research, wrote
code for KNN, experimented with SVM (did not use due to O(NN3) runtime complexity),
experiment with transfer learning (ResNet 50), project writeup
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8 Appendix

A description of each preprocessing techniques is provided below

1. Grayscaled operation: the value of each pixel is a single sample representing a certain amount of light.
This is achieved by using torchvision’s Grayscale function in transforms, converting the 3 channel
RGB image into a 3 channel grayscale image.

2. Gaussian Blur operation: the image is convolved with a Gaussian filter instead of a box filter. In our
implementation, we apply a Gaussian filter of size 5 x 5 and with a standard deviation of 2 along the
x-axis and 3 along the y-axis.

3. Salt-and-Pepper noise operation: SNP is an impulse type of noise in images. An area contains ’salt’
noise if there is a white dot in the dark region of an image and contains "pepper’ noise if there is a
black dot in the bright region of an image. We generate salt-and-pepper noise with a probability of
0.05 to convert each pixel into a noised one.
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American Bulldog 200 Abyssinian 198
American Pit Bull Terrier 200 Bengal 200
Basset Hound 200 Birman 200
Beagle 200 Bombay 200
Boxer 199 British Shorthair 184
Chihuahua 200 Egyptian Mau 200
English Cocker Spaniel 196 Main Coon 190
English Setter 200 Persian 200
German Shorthaired 200 Ragdoll 200
Great Pyrenees 200 Russian Blue 200
Havanese 200 Siamese 199
Japanese Chin 200 Sphynx 200
Keeshond 199 Total 2371
Leonberger 200 2.Cat Breeds
Miniature Pinscher 200
Newfoundland 196
Pomeranian 200 Cat 2371
Pug 200  Dog 4978
Saint Bernard 200 Total 7349
Samyoed 200 3.Total Pets
Scottish Terrier 199
Shiba Inu 200
Staffordshire Bull Terrier 189
Wheaten Terrier 200
Yorkshire Terrier 200

Total 4978

1.Dog Breeds

Figure 4: (1) Dog breeds, along with image counts, (2) Cat breeds, along with image counts, (3)
Animal breed, along with image counts
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Figure 5: Residual Block Diagram
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Figure 6: CNN with Residual Block Architecture



(a) Original (b) Blurred (c) Grayscaled

Figure 7: Four Samples of an Abyssynian Cat

(d) Salt and Pepper

# Notable Experiment Details Train., Val. Acc.
1 K-nearest neighbor (k = 2) 99.75%, 98.34%
2 K-nearest neighbor (k = 25) 44.12%, 2'7.83%
3 K-nearest neighbor (k = 500) 12.05%, 10.39%
4 Multi-layer CNN Model; 3 layers; 99.2%, 20.4%
5 Single-layer CNN Model; Attempt to reduce overfitting and complexity 84.8%, 12.1%
CNN with Residual Blocks; Attempt to reduce high bias;

6 Each block — 3 Conv2D Layers 99.9%, 35.4%
7 CNN with Transfer Learning; ResNet50 model with 7%, 14%

pretrained weight from ImageNet; Technical issues

Figure 8: Certain Observations
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