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Abstract

Access to clean water is a crucial metric to keep track of human development
in many countries. However, collecting data for water quality has been labor-
intensive and expensive. On the other hand, with the ever growing number of
publicly available datasets for geographical images, and the rapid development
of machine learning/deep learning techniques, application of these innovations
to prediction of water conditions presents an interesting approach. In this
project, we attempt to explore the correlation between street-level imagery
combined with satellite imagery and water quality. We architecture a novel
multi-modal model that takes in the average features learned from CNN model
trained on the street-level dataset concatenated with the features learned from
a CNN model trained on satellite dataset. The result is a combined effect of
each street and satellite imagery trained separately on a CNN model. Our
test MSE of 1.238 indicates that although street-level images are better in pre-
dicting water quality, these images alone are not enough to make informative
predictions.

1 Introduction

There has been a lack of progress in the United Nations Sustainable Development Goals (SDGs) due
to a lack of data on key environmental and socioeconomic indicators. The indicators are calculated
through the analysis of ground survey data, which is limited in quantity [1]. Machine learning (ML)
and deep learning (DL) have made it possible to use globally available data to make progress towards
the SDGs [2-3].

We work with the SustainLab at Stanford to create a model to monitor progress for the
SDG of ensuring access to safe drinking water for all by 2030 [1]. We explore and evaluate satellite
and street level images as sources to predict Water Index (1-5 continuous scale, where 5 is the
"highest quality") of local clusters using a novel multi-modal CNN architecture. Although models
have been built to use satellite images to predict Asset Wealth Indices, none have incorporated
street-level images, which can add more granularity to the model’s predictions. Our multi-modal
approach can be utilized to inform policy, financial allocation, and urban planning decisions to more
effectively make advances towards the SDG of equitable access to drinking water.
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2 Related work

The approaches to measuring water quality index range from Convolutional Neural Networks to
Long Short-Term Memory Networks (LSTMs) to Graph Convolutional Networks (GCNs). Some
literature is surrounding a time series-based estimation of water quality, given a series of input
measurements from the water [9][10]. In [9], Liu et al. used a LSTM deep neural network to measure
water quality indicators in the Yangtze River basin (pH, dissolved oxygen, chemical oxygen demand,
etc.). However, these methods are sensor-intensive and unable to generalize to an entire region. They
necessitate the reading of constant sensors located in the water, and require an on-the-ground team to
ensure the hardware is deployed correctly.

Other methods have used satellite images to predict certain indicators over a region of land. One
model deploys a deep learning CNN on publicly available satellite imagery, and is able to explain
70% of variation in wealth in most countries it was tested on[2]. However, it seems that the fidelity
of the measurement could further be improved by adding street-level images, as suggested by [11].
The street-level image approach was particularly clever, since it used images closer to the ground to
predict livelihood indicators, a metric that intuitively seems more accurately predicted from closer-up
images. This paper also deployed three learning methods (image-wise learning, cluster-wise learning,
and cluster-wise GCN learning) on the street-level images, where they saw varying degrees of success
between all three methods in different countries (Kenya vs. India).

The benchmark model for the water quality index has an accuracy of 0.4 using a k-nearest neighbors
(kNN) model trained on only satellite images[4]. Inspired by the success of using street-level images
to predict livelihood indicators, we design a model that separately trains a CNN model on street-level
images and satellite images, then aggregates the learned features from these CNN models. The
aggregated features are then fed into a NN model to predict water quality index of a cluster.

3 Dataset and Features

We used both satellite and street-level images to train our model. The labels were sourced
from the DHS survey. All of this data was aggregated by the SustainLab at Stanford:
www.github.com/sustainlab-group/sustainbench.

3.1 Water Quality Index Survey Data

The DHS surveys provide the water quality for each household surveyed (water quality is ranked on a
1-5 continuous scale, where 5 is the “highest quality”). The Water Quality Index is the average score
of households in a cluster. Sustainlab has summarized the household-level data into “cluster-level”
labels, where a “cluster” roughly corresponds to a village or local community [4]. 179 DHS surveys
from 56 countries spanning 1996-2019 were used to create labels.

3.2 Satellite and Street-level Imagery

The SustainBench dataset provides collections of images under different country codes, ranging from
approximately 100-400 images per country per year. The total number of satellite images in the
dataset having a valid water quality index label is 87,938. Around 20% of the satellite images have at
least one corresponding street image. For each of these satellite images, there are between 1 to 100
street-level images (~800,000 total images).

Satellite Images:

The satellite imagery consists of both daytime images (multispectral - MS) from the Landsat 5/7/8
satellites and nightlights (NL) images from the DMSP and VIIRS satellites [4]. For each cluster from
a DHS survey in a country by year, a 255x255x8 image (7 MS bands, 1 NL band) is provided.

We sampled a total of 4,500 satellite images. We collected these images by randomly sampling 100
images from each set of images grouped by the DHS survey in a country by year.
We split the dataset into train/validation/test buckets with the ratio 80/11/8, roughly abiding by
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standard practices. Specifically, we split the countries into the following groups:

• Train set = 12 countries: TZ, BF, CM, GH, IA, KM, LS, ML, MW, NG, PH, TG

• Validation set = 4 countries: BJ, BO, CO, DR

• Test set = 2 countries: AM, AO

Note: There are 7 countries with missing data that we excluded: HN, ID, JO, KH, MA, MB, NI.

Figure 1.: An example of a satellite image

Street-Level Images:

A maximum of 100 images within 0.01 degrees lat/long of a DHS cluster and were captured within 1
year of a DHS cluster datapoint were retrieved and labelled with their corresponding cluster [4]. The
raw images have 3 channels (RGB) and were preprocessed into 236 x 256 x 3 vectors. The resolution
of the original images is approximately (250-1000)x(250-1000) pixels.

• Train set = 6 countries: CD, MD, ZW, CM, GH, NP

• Validation set = 2 countries: BJ, BO

• Test set = 2 countries: AM, AO

Figure 2.: Street-level images

3.3 Summary of Data Used in Separate Models

Dataset Resolution Train Examples Dev Examples Test Examples
Satellite 255*255*8 3600 500 400
Street 256*256*3 10279 1152 1000

4 Methods

We modify the pretrained ResNet50 model from tensorflow to train satellite imagery and street-level
imagery separately, and extract the second last layer from each model to concatenate them and input
into a regression model. These images were trained separately since nature of the features for satellite
imagery and street-level imagery are different. ResNet50 in Tensorflow is pretrained on ImageNet
dataset. Transfer learning are used for both satellite model and street model because lower level
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features in general images learned by ResNet50 are useful for our data. ResNet50 in Tensorflow only
accept data with 3 channels, we modify it to accept 8-channel data.

Water quality index data is used as labels input into our model. Each label is a numeric value ranges
from 1 to 5. So the output of our model is bounded data in [1, 5]. We perform normalization on input
labels to be ranged in [0, 1], use Sigmoid activation as the final layer and scale the output back from
[0, 1] to [1, 5].

After training each CNN model separately for satellite and street-level imagery to predict the water
quality index for each cluster, we extract 64 features for each satellite image and street image. For
each satellite image, the average of the features for its corresponding street-level images is calculated
and concatenated to the feature for this satellite image. This creates a feature vector of 128 features
combining the satellite image and street-level images for a cluster.

In other words, our aggregate feature vector h(f(x), g(r1), ..., g(r100)) is

h(f(x), g(r1), ..., g(rk)) = [f(x), (
1

k
) ∗ (g(r1) + ...+ g(rk))]

We then train a neural network (NN) on these aggregated feature vectors make predictions for water
quality index.

Figure 3.: Model Architecture

5 Experiments/Results/Discussion

We use mean squared error (MSE) loss when training and validating, and also use it to measure the
performance of predictions.

5.1 Architecture Choices

We experiment with two CNN models during training. One is a 7-layer small CNN defined by
ourselves, and one is ResNet50 with transfer learning. The small CNN gives lower test MSE loss
than our modified ResNet50 model when trained on a small dataset (around 400 examples). However,
on our sampled dataset (more than 3000 examples in train set), our modified ResNet50 gives better
result. A probable cause is that the large architecture of ResNet50 requires an equally large dataset to
learn meaningful gradient information. Since the ResNet50 performs better on large datasets, we
decide to use our modified ResNet50 as the model to train the satellite and street-level imagery.

5.2 Hyperparameter Tuning Experiments and MSE Results

Due to the computation limitation of our EC2 instance, we are not able to set a batch size larger than
32 and an epoch number larger than 15. We choose Optimizer Adam and use the default learning rate
0.001.
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Test MSE is calculated based on predictions and normalized input labels. Normalized labels ranges
in [0, 1]. The true lables ranges in [1, 5]. Test MSE on Scaled Output is calculated by true labels and
prediction values scaled back from [0, 1] to [1, 5]. Please refer to Appendix to see Hyperparameter
Tuning Experiments and MSE Results Table.

5.3 Best Training Results

Model Batch
Size Epoch

Frozen
Layers
Num

Dropout Train
MSE

Dev
MSE

Test
MSE

Test MSE on
Scaled Output

Satellite 32 10 35 None 0.045 0.051 0.101 1.624
Street 32 5 45 None 0.147 0.075 0.060 0.965
Aggregate
(2 FC) 16 10 N/A None 0.052 0.040 0.077 1.238

5.4 Discussion

The overall high test MSEs suggest that satellite imagery and street-level imagery have weak correla-
tion with water quality index. The best MSE result on scaled output for satellite model, street model,
and aggregation model is higher than 0.9 while water quality index ranges from 1 to 5.

The average test MSE for the street imagery is lower than that for the satellite imagery could be
attributed to the fact that satellite images are zoomed out representation of a location and thus
cannot capture geographical nuances relating to water quality as well as the ground-level features
learned from street imagery. The average test MSE for the aggregation model is higher than that for
street-level imagery but lower than the test MSE for satellite imagery, demonstrating a blended effect
of the two types of datasets.

To avoid overfit, we experiment with adding 1-layer Dropout for both satellite model and street model.
As for satellite model, there should be no overfit issue because after we add 0.2 dropout, the result is
much worse. The reason could be that satellite model cannot learn enough information from the weak
correlation between input imagery and labels. Additionally, adding dropout will make the model
learn even less. As for street model, 0.2 dropout does not result in a significant difference. Further,
0.5 dropout encounter a worse Test MSE. Based on these results,we decide not to add dropout to our
final models.

6 Conclusion/Future Work

In this academic project from using data from the SustainBench project, we investigated the correlation
between satellite/street-level imagery and water quality index using a novel multimodal NN model.
Our results suggest that datasets for these images, alone or combined, are not significant indicators
for water quality prediction even though street data performs slightly better than satellite imagery
alone and both of them combined.

There are several improvements on the datasets that can be promising. Currently train/dev/test sets
are from different countries. Different countries may have different types of terrains, weather and
populations. Data learned from some countries may not be applied to others. One can consider
sampling data from geographically similar or neighboring countries to achieve a relatively same
distribution on dev and test sets. Specifically, one can experiment with putting countries from the
same continent or latitude in dev and set. In addition, blurry and general satellite imagery may not be
able to provide clear enough information on water quality of a location. Unmasking techniques or
data filtering efforts to generate satellite images with unhindered view on reservoirs might be helpful.

More explorations on the model are also worth to try. With more powerful computational resources,
we could expand our search for hyperparamters on the whole dataset provided by SustainBench.
Different ways to aggregate satellite and street features can also be explored. For example, NN-based
ideas such as attention-based transformer network, GCNs or "deep sets" models might prove to be
more powerful in leveraging satellite and street image information for water quality prediction.
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7 Contributions

All members contributed plenty of effort to this project. Each member had specific aspects to focus
on and there were also collaboration works. Anh focused on importing data, preprocessing street
images, extracting features, and coding up and tuning the aggregation model. Xinqi focused on
the satellite model, hyperparameter tuning experiments for both satellite model and street model,
and providing code skeletons for all models. Selena focused on coding up the street model and
report/poster write-ups. All team members contributed to the final report and the video.
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Appendix

7.1 Hyperparameter Tuning Experiments and MSE Results

Exp
No. Model Batch

Size Epoch
Frozen
Layers
Num

Dropout Train
MSE

Dev
MSE

Test
MSE

Test MSE on
Scaled Output

1 Satellite 16 10 45 None 0.176 0.105 0.182 2.915
2 Satellite 32 10 45 None 0.064 0.076 0.128 2.056
3 Satellite 32 15 45 None 0.175 0.102 0.175 2.805
4 Satellite 32 10 35 None 0.045 0.051 0.101 1.624
5 Satellite 32 10 25 None 0.176 0.104 0.181 2.896
6 Satellite 32 10 35 0.2 0.170 0.101 0.179 2.864
7 Street 16 5 45 None 0.045 0.043 0.075 1.213
8 Street 32 5 45 None 0.147 0.075 0.060 0.965
9 Street 32 5 35 None 0.151 0.081 0.072 1.152
10 Street 32 5 45 0.2 0.147 0.075 0.060 0.965
11 Street 32 5 45 0.5 0.034 0.040 0.068 1.099

12 Aggregate
(1 FC) 16 10 N/A None 0.053 0.040 0.080 1.285

13 Aggregate
(1 FC) 32 10 N/A None 0.054 0.040 0.078 1.245

14 Aggregate
(2 FC) 16 10 N/A None 0.052 0.040 0.077 1.238

15 Aggregate
(2 FC) 32 10 N/A None 0.053 0.040 0.078 1.254
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