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Abstract

Coronary artery calcium (CAC) scoring from chest computed tomography (CT) is used to
assess risk of cardiovascular disease, which continues to be the leading avoidable cause of
mortality in the United States. Currently, CAC scoring requires highly trained specialists
to segment the calcification. This is expensive, rarely covered by insurance in the U.S.,
and poses a bottleneck in areas with scarcity of such trained specialists. To address these
problems, we developed a deep learning system that segments coronary artery calcium from
chest CTs. The segmentation achieved a Dice coefficient of 0.739 on the test set. From the
predicted segmentations we produced CAC scores using the Agatston convention and found
a high level of concordance with scores derived from the manual segmentations. Our results
demonstrate the clinical value of a deep learning system for the automated prediction of
cardiovascular events.

1 Introduction

Cardiovascular disease (CVD) is the leading avoidable cause of mortality in the United States1. While there
exist effective pharmaceutical interventions and lifestyle modifications to treat CVD, identifying those who
would benefit from such interventions continues to be a challenge2. Age and gender, as traditional risk markers,
have a limited prognostic value for cardiovascular disease in humans. As a result, considerable advancements
in the prediction and categorization of cardiovascular risk on an individual basis are necessary3.

For several centuries, the association between vascular calcification and atherosclerotic disease has been
recognized. The quantification of coronary artery calcium (CAC) was pioneered in 1990 by Arthur Agatston
and it remains one of the strongest predictors for adverse cardiovascular events4. First, the cardiac arteries
captured via a gated computer tomography (CT) scan are segmented, and then calcification in those arteries is
quantified by an Agatston score, which is the summed score of all lesions in the coronary arteries, weighted for
the density of the calcium.5–8. Gating refers to an acquisition technique that triggers a scan during a specific
portion of the cardiac cycle in order to obtain high-quality scans void of arterial pulsations that can interfere
with the read of the scan.

Currently cardiac segmentation requires highly specialized skills and is labor intensive, which presents a
bottleneck for coronary artery calcium screening. We aim to develop a deep learning algorithm that can
quantify an Agatston score from a gated CT to enable widespread screening in areas with shortages of
individuals trained for segmentation.

2 Related work

In CT scans, calcification presents itself as dense white lesions; this presentation is not limited to calcification,
and can also denote artery walls, bones, and foreign objects such as stents. Furthermore, CT scans show several
structures that can contain calcification, including the lungs, bones, and both coronary and non-coronary
arteries [TODO doctors: please verify]. To do this task well a model must be able to distinguish between
calcification and other dense lesions, and localize calcification only in the four coronary arteries.

Prior work on automatic calcium scoring can be divided into three categories: rule-based approaches, conven-
tional machine learning approaches and, most recently, deep learning approaches.

Early rule-based approaches identified CAC based on manually identified features such as location, shape,
size, texture, and intensity, and then used a two-stage classification approach of k-nearest neighbors and
support vector machines9,10. To determine location features, the CT images were registered to atlas images
to help create probabilistic maps of CAC locations. The atlas images were made from tens of CTs with
annotated coronary arteries9,10. This scheme is labor-intensive, time-consuming and has produced only
average performance.

The second wave of automatic calcium scoring was done using improved machine-learning approaches.
Instead of relying heavily on feature selection, randomized classifier trees were used to efficiently reduce
dimensionality11, and affine registration replaced deformable image registration, which cut computational
complexity12.
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Deep-learning approaches represent the majority of recent work on automatic calcium scoring. Zelesnik
et al13 chained together 3 models for this task: heart localization, heart segmentation, and finally calcium
segmentation. This achieved high performance, at the cost of being potentially difficult to productionize in
real-time in low-resource settings due to the required computational overhead. More recently Eng et al were
successful with a one shot approach.14 We took a one shot approach as well.

3 Dataset and Features

We used the Stanford AIMI COCA dataset15, which was collected by Stanford Hospital and Clinics. There
were a total of 789 gated CT scans from 789 patients, with on average 50 512x512 images per scan. There
were 36,411 total images, among which 3,656 contained at least one coronary artery calcification object. Each
calcification object was also categorized as belonging to one of four coronary arteries. There were a total of
6,211 calcified objects, with an average pixel count of 119, such that they occupied on average only 0.04%
of the image. This poses a challenging segmentation task; the challenge is amplified by a need to detect
calcification in the 4 coronary arteries, and not elsewhere in the heart, lungs, or other visible organs.

3.1 Data Preprocessing

We implemented a data ingestion pipeline that parsed the calcification metadata from XMLs and stored them
in a Pandas DataFrame16 from which we derived binary masks. The image indexing of the metadata was
unexpectedly in reverse order from the image indexes in the filenames, which sent us on a fun investigative
adventure as we uncovered the issue. We eliminated 5 patients due to malformed calcification metadata. We
randomly partitioned our patients into a train-validation-test split of 80%-10%-10%.

The dataset did not contain the ground truth calcification scores, which we derived from the segmentation
masks as we describe later on.

4 Methods

The goal was to create binary segmentation masks that denoted regions of calcification in the coronary arteries,
and to then compute Agatston scores from the masks that denote the level of coronary artery calcification.
The more accurate the segmentation mask, the more accurate and thus clinically useful the Agatston score.
Because arterial classification of the calcified object can be clinically useful, we also experimented with adding
a classification head at the top of the network.

4.1 Baseline Model

For our baseline, we trained a model with U-Net architecture, which has been shown to work well for medical
image segmentation17, to which we added batch normalization. We also used dice loss, the Adam optimizer,
and learning rate of 1e-4. We didn’t have a sufficient number of volumes to take a volumetric approach, and
thus treated this as a 2D image segmentation task.

4.2 Baseline to Improved

We faced two types of class imbalance problems: (1) we had a small fraction (10%) of images with at least
one coronary artery calcification, and (2) of these images, the calcification occupied only 0.04% of the image.

4.2.1 Class Balance

To address the first type of class imbalance, we experimented with different positive image upsampling factors.
Upsampling the positives to a very high positives to negative ratio produced a very high Dice score on positive
images, at the expense of performance on the negatives. Ultimately we found a ratio of approximately 1:1
positive to negative ratio proved best on the validation set, which corresponded to a positives upsampling
factor of 8.

4.2.2 Loss

We initially used dice loss, which measures the intersection over union between the predicted calcification
class and ground truth calcification class, and is often used for image segmentation. We found original dice
loss sometimes had convergence issues so we used a modified dice loss18 that squares the ground truth and
predicted masks before summing them. Its cost function is shown below.
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The γ smoothing factor avoids zero division. The first term is modified dice loss18 and the second is categorical
cross entropy loss for artery classification of segmented pixels. The indicator ys in the second term is 1 when
the pixel corresponds to a calcification. The full loss is a weighted sum of both the parts, where α is a
hyper-parameter. In segmentation-only experiments, we excluded the second term. ⊙ is element wise product.

To address the second type of class imbalance, we employed pixel-level focal loss, which is an improved
version of cross-entropy loss that addresses class imbalance by assigning a higher loss to difficult examples
and down-weights easy examples19. The cost function for binary focal loss is shown below, where c represents
each class.
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γ log(pc)− (1− βc)p

γ
c log(1− pc)
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Figure 1: A block diagram of the Attention U-Net. Attention gates (AGs) filter the features propagated through
the skip connections. Feature selectivity in the AGs is achieved by use of contextual information extracted in
coarser scales. Reproduced from original publication21

Model Id Model Train DCE Dev DCE Test DCE
1 Baseline: Dice Loss U-Net 0.743 0.481 0.463
2 U-Net Focal Loss Upsample 4x 0.807 0.496 0.489
3 U-Net Dice Loss Trained on Positives 0.518 0.497 0.514
4 U-Net Dice Loss Upsample 4x 0.799 0.581 0.558
5 Custom Attention U-Net Focal Loss Upsample 8x 0.914 0.813 0.739

Table 1: Performance of the segmentation models across patient splits. The Custom Attention U-Net with
focal loss and upsampling to produce a 1:1 ratio between positives and negatives outperformed our baseline
model by 60%.

We employed a gamma of 2 and, to place a slightly higher penalty on false negatives than false positives, a β
of 0.55.

We additionally experimented with focal tversky loss20., which is a combination of weighted dice loss and
focal loss that is intended to address class imbalance in medical image segmentation, but focal loss proved
empirically better for this task.

4.2.3 Architectures

Aside from standard U-Net, we tried a custom version of the Attention U-Net21. The Attention U-Net was
introduced for medical image segmentation, and applies attention gates (AGs) that identify salient image
regions and prune feature responses to preserve only the activations relevant to the target task. The architecture
diagram is shown in Figure 1. It had 846,500 trainable parameters, while the standard U-Net had 34,523,969.
We found that despite having about 2% of the trainable parameters as the standard U-Net, it outperformed the
latter due to the efficacy of the attention gating. We noticed early signs of overfitting, so we introduced a novel
component to this architecture by adding a dropout layer before the linear layer in the attention gate.

In all models we used batch normalization, and for all models except the baseline introduced a dropout rate of
20% to reduce overfitting to the train set. We eventually increased the learning rate to 1e-3, and used a batch
size of 4 or 8 due to GPU memory constraints.

5 Results and Discussion

5.0.1 Model

The permutation that resulted in the best performing model was the Attention U-Net with focal loss and a
positive upsample factor of 8. This achieved a Dice coefficient of 0.914 on the train set, 0.813 on the validation
set, and 0.739 on the test set. The combination of the custom Attention U-Net and focal loss contributed most
to this performance, which was a 60% improvement over our baseline.

5.0.2 False Positive and Negatives

Early checkpoints of the model had a lot of false positives and declared any dense white areas coronary artery
calcification. In contrast the final model discerns between coronary artery and non-coronary artery calcification
well. The aortic root calcification is appropriately ignored.

Our model captured some false positives and false negatives as demonstrated in Figure 2. In one case, it
erroneously marked a coronary sinus wire from a resynchronization therapy device, a special type of catheter,
as a protracted calcification. In another case, it captured a RCA stent as calcification. As for the false negatives
they appear to have very small and faint calcification or are located near the aorta. Future work may prioritize
purposefully up-sampling or augmenting images that include artefacts such as pacemakers and stents or images
that have aortic calcification or aorta-adjacent calcification.
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Figure 2: Example predictions from Model 3

α Train DCE Dev DCE Dev Artery Class Accuracy
0.5 0.397 0.40 -
0.8 0.928 0.88 0.97
0.9 0.937 0.89 0.94

0.97 0.939 0.89 0.76
1.0 0.961 0.93 -

Table 2: Performance of the segmentation + artery classification models on positive images. These models
were trained on only positives. Ultimately we focused exclusively on segmentation to maximize segmentation
performance and thus clinical value.

5.0.3 Artery Classification

We trained some models to do both calcification segmentation and artery classification of the segmentations.
The 4 artery classes were the left coronary artery, right coronary artery, left circumflex, and left anterior
descending artery. For these experiments, we trained only on positive images, and achieved strong performance
on both tasks when evaluating on positive images. We tuned the α hyperparameter in 4.2.2 to find the best
loss weighting for the segmentation and classification components. Ultimately we shifted to focusing on
segmentation exclusively to maximize segmentation performance and thus clinical value. Results are in Table
2.

5.0.4 Agatston Scores

From the ground truth and predicted segmentation masks, we computed Agatston scores to provide clinical
comparison of our model with human raters20. The mean ground truth Agatston score for patients in our test
set was 198 with a range of 2851, and the mean predicted Agatston score with Model 5 was 192. Furthermore,
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based on the Agatston scores we bucketed patients into standard risk categories4 and found a high level of
concordance with ground truth categories, as shown in chart Figure 3. For example, our model correctly
categorized 80% of the patients with a true risk category of 4 as falling into that bucket. The remaining 20%
were categorized as level 5.

Figure 3: Computed risk category based on predictions from Model 3 vs ground truth. The Y axis gives the
distribution of prediction for a particular X.

Figure 4: Distribution of volume-level Agatston scores between the ground truth and Model 5

6 Conclusion

Our results demonstrate the power of combining focal loss and Attention U-Net on the severely class imbal-
anced problem of coronary artery calcium segmentation. There is much potential in using deep learning to
screen patients for heart disease in areas with a scarcity of technicians trained for CT segmentation of detection
of coronary calcification.

6.0.1 Future Work

Deep learning algorithms can introduce tremendous value in the clinic by reducing unwanted variation in
clinical practice, democratizing certain diagnostics to larger masses, and contributing to the detection of novel
or traditionally undetectable disease states. While feasibility studies such as ours exist and are gaining traction
in various domains of medicine, the adoption of deep learning algorithms in clinical practice is still marred with
several barriers. Most of the work, as was ours, has been retrospective; it is imperative that prospective study
designs be implemented to truly understand these algorithms, since performance is likely to be worse with
real-world contemporaneous data that differs from that used in algorithm training. Additionally, randomized
control trials must be implemented to deliver both a higher level of evidence and accordingly, facilitate the
trust that will lead to adoption of AI in the bedside. Additional challenges exist with respect to generalization,
and site-specific model training may be a requisite prior to adoption given systematic differences between
health-systems and their respective populations.

Arguably more important in the medical space than any other is the problem of interpretability and explain-
ability. Our model easily permits explainability because both the segmentation mask and Agatston score can
be displayed to physicians. This type of design facilitates adoption in the clinic and fosters trust with both
providers and patients.
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