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1 Introduction

Most of widely used speech synthesis systems are only able to generate voices of a limited number of
speakers, and they usually require large amount of voice samples from these speakers. Furthermore,
they can only generate monotonous speeches with very little variations in tone or emotion.

In this project we propose a way to condition our speech synthesis model on both speaker voice and
configurable emotions. Given an input text, the model should generate the corresponding speech
audio with a voice similar to the speaker in a given reference audio, and convey an emotion either of
a given category or similar to another reference audio. Ideally, the model should work reasonably
well with reference audios shorter than 20 seconds.

2 Related work

Tacotron [12] introduced the first end-to-end model for speech synthesis trained directly on text-audio
pairs. This allowed us to avoid any hand-crafted feature representations. Tacotron 2 [7] improved upon
Tacotron by using WaveNet [10] as its vocoder to generate human-like natural speeches. Importantly,
the encoder-decoder seq2seq architecture used in Tacotron 2 made it easy for us to alter the encoding
to generate speeches with different styles.

Jia et al. [5] applied transfer learning from speaker verification to generate speeches that mimic
the voices of different speakers. They do so by concatenating the speaker embeddings produced by
a pre-trained speaker verification model with the encodings produced by Tacotron 2, and fed the
concatenated representation back to the decoder and vocoder of Tacotron 2. However, the model does
not support varied emotions.

It has been shown that embeddings can also be used to condition the Tacotron decoder to generate
speech with different prosody styles [8, 13]. Based on this, Um et al. [9] trained embeddings that
encode the emotions of speeches. Further, they proposed a linear interpolation method to control the
intensity of emotions in the synthesized speech. This model only supports a single speaker.

Recently, many have developed models for recognizing speech emotions with high accuracy. Par-
ticularly, [1] has shown in 2019 that one can obtain results close to state-of-the-art performances
with an architecture as simple as a stacked bidirectional LSTM plus fully-connected layers. This is
significant to our work as this architecture can be easily adapted to create emotion embeddings.

In this work we apply both the speaker embedding method in [5] and emotion encoding method in [9]
to generate speech that mimics the voice of a reference speaker and the emotion of another reference
audio.
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Figure 1: Model overview. All four components are trained independently. This figure is adapted
based on Figure 1 in [5]

3 Datasets

3.1 Emotional Speech Dataset - IEMOCAP

The primary dataset we use in this work is the IEMOCAP [2] dataset developed at USC. It is a
multimodal dataset that contains speech audios, videos, text transcripts and motion capture of the
faces of speakers. It is designed to cover rich emotions in human communication, covering a set
of 10 emotion categories: Anger, Disgust, Excited, Fear, Frustration, Happiness, Neutral, Sadness,
Surprise and Other (e.g. apologetic, confused, resigned etc.). It contains roughly 10k utterances from
10 speakers and in total approximately 12 hours of speech. The speech audios are recorded in a lab
environment where the background noises are minimal. For the purpose of this project, we only use
the speech audios, transcripts and the emotion category labels.

We also evaluated the MELD dataset but didn’t use it to train our models. See Appendix C for details.

3.2 Multispeaker Speeach Dataset

There are plenty of readily available multispeaker speech synthesis datasets. Notably, VCTK [11] has
44 hours of speech from 109 speakers. LibriSpeech [6] has 436 hours of speech from 1,172 speakers.
We do not use these 2 datasets directly to train our models. Instead, they are used in [5] to train their
speaker encoder and speech synthesizer, which are then used by us as pretrained models. As such,
we do not discuss these 2 datasets in detail. Interested readers may find more details in [6, 11].

4 Approach

4.1 Data Preprocessing

The raw audio files in the IEMOCAP dataset are .wav files. We resampled the raw inputs at 16kHz,
normalized the audio volume, and removed long silences. Further, similar to [5, 7, 8, 9, 13], we
converted the wave signals into Mel Spectrogram. Lastly, we discarded utterances that are too short.
The last step removed roughly 29% of the samples, leaving us with 7,130 utterances. Lastly, the
remaining samples are split into train/dev/test sets in a stratefied manner with a ratio of 80%/10%/10%.

4.2 Overall Model

As shown in Figure 1, we adopted the encoder-decoder-vocoder architecture with 4 main components
similar to [5, 8, 9, 13]. The 4 components are (1) Emotion Encoder, (2) Speaker Encoder, (3)
Synthesizer, and (4) Vocoder. Particularly, the Synthesizer includes a text encoder whose outputs
are concatenated with the outputs of the emotion and speaker encoders. Together the output of all 3
encoders are used by the attention-based decoder and the vocoder to generate a waveform.

All four of the components are trained independently. For the Speaker Encoder and the Vocoder, we
reuse the model proposed in [5] and trained by [4]. For the other two components, we train our own
models on the IEMOCAP dataset [2] both from scratch and with transfer learning.
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Table 1: Accuracy of emotion encoders when trained using classification. There are 10 categories
Model Transfer Learning Top-1 Error Steps to Converge

LSTM + Linear + Norm No 39.1% ≈ 160k
LSTM + Linear + Norm Yes 13.3% ≈ 100k
Stacked BiLSTM in [1] No 16.1% ≈ 50k

4.3 Emotion Encoder

4.3.1 Training with Classification

We trained our emotion encoder using classification with three different configurations. First, we
used the a simple LSTM + Linear + Normalization Layer architecture as the encoder. We added an
additional full-connected layer to produce the classification output, and trained it on IEMOCAP from
scratch. In the second configuration, we used the same model but initialized it with pretrained weights
from the speaker encoder of [5]. In the last approach, we implemented and adapted the stacked
bidirectional LSTM model proposed in [1]. In order to produce more meaningful embeddings, we
converted the ReLU activation function in the second last layer of the model (i.e. the final layer
for the encoder) to tanh, and updated the final layer to match our task. We trained the model from
scratch as the authors did not publish trained models.

4.3.2 Training with Triplet Loss

We also trained the same emotion encoder architectures using triplet loss. During each epoch, all
utterances are sampled as the anchor exactly once, whereas the positive and negative examples are
randomly samples given the anchor. We used L2 distance function and a margin of 1.0. The triplet
loss is defined as follows, where A, P, N denotes anchor, positive, negative examples respectively.

L(A,P,N) = max{d(enc(A), enc(P ))− d(enc(A), enc(N)) +margin, 0}

4.4 Synthesizer

The Synthesizer is trained in a strictly supervised manner. Given a text-speech pair, the inputs to the
Synthesizer are the texts and the emotion/speaker embeddings, and the labels are the Mel Spectrogram
of the speech audios. We used the same loss function proposed in [5] which is the sum of L2 and L1

loss, as well as a binary cross entropy loss on the prediction of <END> token. The authors argued
that empirically adding L1 loss made the model more robust to noisy data.

We experimented training the Synthesizer both from scratch and with transfer learning. For transfer
learning, due to the additional input of emotion embeddings, some weights of our model are not
present in the pretrained models. To tackle this, we repeated the pretrained weights dedicated for the
speaker encoder (e.g. encoding projection layer, attention layer etc.) to initialize the weights for the
emotion encoder.

5 Result Evaluation & Analysis

5.1 Emotion Encoders

5.1.1 Training with Classification

Table 1 summarizes the classification performances of the emotion encoders proposed in Section 4.3.1.
With transfer learning, the base model (i.e. LSTM + Linear + Normalization) not only drastically
reduces the prediction error, but also converges much faster. Furthermore, by adopting an architecture
proven effective for emotion recognition in [1] we were able to achieve comparable top-1 error
without transfer learning, and further reduces the training steps required.

Figure 2 is a visualization of the emotion embeddings projected in 2D by t-SNE and PCA. It shows
that while same emotion tend to form cluster among themselves, related emotions partially overlap in
a meaningful way. For example, the Anger cluster has a considerable overlap with Frustration, and
so does Happiness and Excited. On the other hand, Happiness has very little overlap with Sadness.
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Figure 2: Visualization of emotion embeddings extracted from uetterances in IEMOCAP dataset

Table 2: Evaluation of Synthesizers with Different Configurations
Synthesizer Pretraining Emotion Encoder Pretraining Average Loss Steps to Converge

No No 0.253 ≈ 140k
No Yes 0.208 ≈ 140k
Yes No 0.321 ≈ 15k
Yes Yes 0.262 ≈ 15k

5.1.2 Triplet Loss Training

Despite best effort, no configuration of triplet loss training was found to reliably converge. See
Appendix D for more details. We do not really know why. Possible causes include inadequate
hyper-parameter searching and insufficient training data. Another contributing factor may be the
small number of emotion categories in the training data. As we konw, most prominent uses cases
of triplet loss involve a large number of classes. For instance, face recognition datasets usually
contain images of thousands or millions of unique individuals. By contrast, we only have 10 emotion
categories to train our encoders. Future work is required to identify and resolve this issue.

5.2 Synthesizer

As far as we know, there is no widely accepted standard evaluation metric to measure the "goodness-
of-fit" for Mel Spectrograms. Therefore, we use the average loss as a proxy and rely on visualizations
to compare the performance of our synthesizers.

Table 2 compares the average loss of the different variants of synthesizers we experimented. To
better evaluate the effect of transfer learning, we used the base model for emotion encoder which we
have the option of transfer learning. Surprisingly, the synthesizers trained from scratch performed
significantly better than those starting from pretrained weights. However, they do take almost 10
times longer to achieve such results. Unsurprisingly, the emotion embeddings trained with transfer
learning resulted in better performance in both cases which is aligned with the classification accuracy
evaluation.

Figure 3 show an example visualization of the predicted Mel Spectrograms. More examples are
available in Appendix B. These diagrams show that our Synthesizer is able to predict accurately the
timing of salient sounds or phonemes. The predicted pitch and relative amplitude also reasonably
match those of the ground truths. However, there are two apparent problems. First, the patterns in the
predictions are blurry and more spread out. This is due to imperfect prediction and expected. Second,
the absolute amplitude predicted can differ considerably from the ground truth (Notice the difference
in color scale of the two diagrams). This is a major cause for concern as the same is not observed in
[5] or [13]. This problem will also be discussed further in the Future Work section.

5.3 Vocoder / Overall Model

We had originally planned to evaluate the final outputs with Mean Opinion Score (MOS), which is
also the primary metric used in [5, 7, 10, 9, 12, 13]. Unfortunately, the quality of the final outputs
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Figure 3: Example synthesized Mel Spectrogram compared to the ground truth. More examples are
available in Appendix B

generated by the model is really poor and the audios are mostly unintelligible. As a result, we did not
execute this step and have to leave it for future work. See Appendix A for details on the original plan.

Upon further inspection, it is revealed that the main problem lies in the Vocoder. To isolate the
problem, we also fed the Vocoder the true Mel-Spectrogram computed from target audios for
comparison. Further, we also implemented the Griffin-Lim algorithm [3] and used it to construct
speech audios from both the synthesized and true Mel-Spectrograms. By comparing some of the
produced samples, we found that the Vocoder is the main problem, as its outputs are still poor when
true Mel-Spectrograms are fed as input, whereas the outputs given by Griffin-Lim algorithm are
considerably better. This indicates that we should train or fine-tune the Vocoder on our own data in
future work, as [10, 7, 5] have all shown that WaveNet (the underlying architecture of our Vocoder)
can produce higher quality of audios compared to Griffin-Lim.

However, even though Griffin-Lim can produce better results, the resulting audio quality is still hardly
satisfactory. There are two parts to this problem. First, even when fed with true Mel-Spectrogram the
outputs are still somewhat difficult to discern for a human. This is due to the inherent weakness of the
algorithm and maybe some details in data processing. The second part is due to imperfect predictions
by the Synthesizer, which are partially caused by the added complexity introduced by the emotion
encoder. [5] observed that after they introduced the speaker encoder to their model, the naturalness of
the final output audio decreased as compared to single speaker model. Nevertheless, this issue can
likely be mitigated by improving the encoders and the Synthesizer in future work.

6 Conclusion & Future Work

We present a neural network approach that aims to synthesize speech that not only mimics a reference
speaker, but also conveys emotions present in a reference audio. We trained our own models for the
emotion encoder and the Synthesizer, and reused pretrained models from [5] for the speaker encoder
and Vocoder. All except the Vocoder worked well. As a result, we were able to produce high quality
meaningful emotion embeddings and fairly accurate Mel-Spectrograms predictions. However, the
overall system was not able to produce good quality speech audios primarily due to the deficiency of
the Vocoder.

The immediate steps for future work should be to train the Vocoder with our setup and evaluate the
overall results with MOS. As discussed in Section 5.3 the Vocoder is the bottleneck of the overall
model performance. After that, a few different directions may be explored. First, as mentioned in
Section 2, the absolute amplitude predicted by the Synthesizer can sometimes differ significantly from
the ground truth. Identifying the reason behind and resolving the problem can definitely improve the
performance of the Synthesizer. We believe better data normalization before or during training can be
potentially effective and worth trying. Another direction for future work is to further explore triplet
loss training as mentioned in Section 5.1.2. In this project we did not find appropriate configurations
that allows the model to reliably converge when trained with triplet loss. However, we feel optimistic
that given the power of deep learning, some configurations exist that allow the training to converge or
even produce better embeddings than training by classification.
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Appendix A Mean Opinion Score Evaluation

The primary metric we originally planned to used to evaluate the overall model is the Mean Opinion
Score (MOS) which is also used in many related work [5, 7, 10, 9, 12, 13]. Below we describe this
plan which is a useful reference for future work.

To the best of our knowledge, there is no published model that generate speeches conditioned on
both speaker voice and emotion. As such, our baseline model would be the multispeaker TTS model
proposed in [5].

To ensure fair comparison, we will present to the human listeners sets of audios produced by the
baseline model and our models in randomized orders and without labels. Where applicable we will
also include the ground truth in the same set so that human listeners can compare side by side. We
evaluate 4 different aspects of the resulting audios - correctness, naturalness, similarity to target
speaker and emotion richness.

We will source human listeners primarily from peers in the CS230 class. This is going to be a
challenge, but hopefully we can get 5 - 10 human evaluators each of which evaluates 20 sets of
audios.

Appendix B More Synthesized Mel Spectrogram Examples

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 4: More examples of predicted mel-spectrograms vs ground truths

Appendix C Evaluation of MELD Dataset

Besides IEMOCAP, the MELD dataset is another useful multimodal dataset that contains roughly
14 hours of audio, video and corresponding text transcripts. It is entirely collected from the popular
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sitcom TV-series Friends, and includes about 13k utterances from more than 200 speakers, covering 7
emotion categories: Anger, Disgust, Sadness, Joy, Neutral, Surprise and Fear. However, the majority
of the speeches are from the 6 main characters of the show.

The main drawback of this dataset is the "canned laughter"1 mixed in the speech audios. Unlike the
noises in a lab environment, these noises are not natural and are often as loud as the speech itself.
Due to this reason, MELD is considered a secondary dataset and was not used to train our models at
this stage. For future work this dataset can be very useful.

Appendix D Training with Triplet Loss

Figure 5: A typical learning curve of emotion encoder training using triplet loss. Despite best effort,
no training configuration was found to reliably converge.

Figure 5 shows a typical learning curve of emotion encoder training using triplet loss. The loss stays
around the margin (1.0), which implies the encoder wasn’t able to learn to differentiate the different
emotions at all.

1Background noises that are supposed to mimic audience reactions, usually laughter noises
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