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Abstract

As demand for Lithium-ion batteries grows rapidly in commercial applications such as electric vehicles and
energy storage systems, it is increasingly important to efficiently and accurately predict the useful lifespan
of Li-ion batteries. Existing battery degradation prediction models tend to be limited by their costly input
requirement or sample size. We utilize a neural network (NN) model, with a weighted loss function, to forecast
battery degradation curves. Given initial battery configurations and cycling conditions, our multi-output NN
model yields regression coefficients that define battery degradation trajectories. Trained with approximately
100 charging protocols, the NN model achieved a R2 = 0.91, significantly outperforming the baseline model.

1 Introduction

Li-ion batteries are widely used in both electric vehicles and
energy storage systems, and it is vital to precisely project
their lifetime performance to maximize utilization.[2]. Cur-
rent research models are designed to predict batteries’ Re-
maining Useful Life (RUL) to a given capacity. Because each
prediction requires experimental data of 5 to 100 initial cell
cycles as inputs, predicting the whole degradation trajec-
tory of batteries in those models are complex and inefficient
[1][10][4].
To reduce operational complexity and better visualize bat-
tery lifetime performance, we build a Neural Network (NN)
model to forecast battery degradation curves without run-
ning any testing experiments. More specifically, our NN of
Multi-Output Regression model calculates the coefficients
of empirical equations that approximate the battery aging
curves. Those coefficients are then used to plot battery
degradation trajectories[7]. The project goal is to accurately
forecast cell aging trajectories using only initial battery
configurations (cell capacity and resistance) and cycling
conditions (voltage, current, and charge/discharge time).
We deploy and compare the different NN layer and neu-
ron settings. Trained with approximately 100 combinations
of battery configurations and cycling conditions, the NN
model is able to predict battery degradation curves for new
parameter combinations.

This approach sheds light on battery degradation prediction
because: 1) it is new and holistic – to our knowledge, no
published methods predict the whole aging trajectory curve;
2) it is simple – in operation, it predicts the aging trajectory
of a new cell with minimal experimental measurements; 3) it
is more economic comparing to traditional RUL predictions,
which depend on costly cell-specific experiments.

2 Related Work

In recent years, machine learning (ML) models are garner-
ing increasing interest in both academia and industry due
to their high flexibility and efficiency in fitting function,
even without underlying physical knowledge. By using ad-
vanced machine learning techniques such as support vector
regression [8], Gaussian process regression [5], and neural
network (NN) [9], people can precisely predict SOH and
RUL of Li-ion batteries. While ML methods can be applied
to both SOH and RUL estimation, there is a big difference
between these two applications in terms of input features
and desirable output. The input features for SOH estima-
tion should be extracted from the BMS during operation
and the outputs are the estimated capacity at a given time.
In contrast, the input features for RUL prediction generally
require the estimated or measured SOH information, such as
the capacity values, to predict remaining lifetime or cycles.
For example, Wu et al. [6] built an RUL prediction model
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based on feed forward neural network (FFNN). The input
features in this model were the recorded voltages during the
battery charging process in each cycle. The output was the
current cycle number of the battery. With the total cycle
number determined by when the battery comes to its end of
life (EOL), the RUL can be calculated by subtracting the
current cycle number from total cycle number.
As for SOH estimation, Yang et al. [10] used a three-layer
neural network model (NNM), which was combined with
first-order equivalent circuit model (ECM) to predict the
SOH within 5% error. Given a cycling profile, the ECM
could simulate the current and voltage of the battery and
the output of ECM was used as the input to the NNM to
predict the SOH of Li-ion batteries. However, SOH and
RUL estimation could not fully represent the degradation
behavior of the Li-ion batteries due to the existence of a
point (typically called the aging knee) at which degradation
rate is increased significantly. Thus, predicting the whole
aging trajectory of Li-ion batteries has become a new option.
Li et al. [3] proposed a deep learning model with multiple
long short-term memory (LSTM) layers in both encoder and
decoder blocks to predict the entire capacity degradation
trajectory in one shot. This model could learn the initial cell
variation and make accurate predictions with only the first
100 cycles of data as the input. It kept updating the input
with more cycle data and the model performances improved
correspondingly. The best-case median prediction error over
the lifetime was 1.1% with normal data and 1.3% with noisy
data. Additionally, this model could also predict the EOL
point and the aging knee point. However, this model is
built on a single cycling condition, so the application of this
model is limited and is not suitable for all use cases of Li-ion
batteries.
Although those works mentioned above developed machine
learning models with good performances, their experimental
data sets were relatively small, mostly containing cycling
data collected from a limited number of cells. Therefore, the
reliability of those models is questioned when they are used
for a large number of cells with initial variations. Attia et al.
[1] tested 48 batteries simultaneously and used the cycling
data to build a closed-loop optimization system for batteries
using machine learning methods. This system combined an
early-prediction model with a Bayesian optimization algo-
rithm, and optimized parameters over 224 unique six-step,
ten-minute fast-charging protocols to find charging protocols
with high cycle life. With a larger experimental data set, the
result of this paper is more reliable and valid for a broader
battery usage. We also collaborated with their group and
obtained even more cell cycling data (385 Tesla cells) from
Stanford Linear Accelerator Center (SLAC).

3 Datasets

Figure 1. Degradation curves of all empirical cells data.

3.1 Experimental data description

The experimental data come from SLAC (Prof. William
Chueh’s group). The raw dataset consists of battery cy-
cling data from 385 Tesla cylindrical cells, which use Nickel-
Cobalt-Aluminum (NCA) oxides as cathode materials and
silicon oxides with graphite as anode materials. The cy-
cling protocols for the aging experiment have more than
100 different combinations of cycling parameters. There are
six variable cycling parameters, including charge current in
two different stages, discharge current, charge cutoff volt-
age, discharge cutoff voltage, and constant voltage charge
time. Aside from the cycling protocols for each cell, two
additional parameters, initial battery cell capacity and resis-
tance values, are also recorded and used as input features.
It is noteworthy that the battery cells were run for different
numbers of cycles and ended up with different degradation
levels. In general, cycling stopped when either of the follow-
ing two conditions were met: 1) cells degraded to below 80%
of their initial capacity (some cells were further degraded
to below 70% of their initial capacity); 2) experiments (in-
cluding charging and discharging) were run for longer than
3 months or a cell was run for more than 5,000 cycles.

3.2 Raw Data Preprocessing

To predict and plot the aging curve, it needs to be defined
quantitatively. For a battery degradation trajectory, the
independent variable X of the fitting formula is the battery
cell equivalent full cycle number, and the dependent variable
Y is the cycle-specific battery capacity. Based on existing
literature, quadratic equations prove to be best fitting for-
mulas because they are relatively easy to fit and exhibit
satisfactory accuracy[7]. Equation 1 is a basic quadratic
equation, where Cn stands for the cell capacity of each cycle
and n represents the cycle number. The fitting curve coeffi-
cients α1, α2, and α3 are outputs generated from our NN
model.

Equation 1 : Cn = α1n2 + α2n + α3

During data cleaning, the cell data with fitting er-
rors higher than 5% (RMSE) are removed for bet-
ter training results. This leaves us with 290 cells
from the original dataset. Figure 2 shows that the
quadratic equation fits well with experimental data. Al-
though the number of data points are very limited, the2



%RMSE values of different curve shapes remain small.

Figure 2. Fitting results of different cells

3.3 Input and Output Data Preparation

Input Argumentation:To better account for polynomial
relationship of our input data, two times more parameters
are generated by raising the eight parameters to the second
power and third power. Tuning the data augmentation level
also changes the model prediction accuracy. The tuning
process and results are discussed in later sections.
Output Normalization: To optimize the battery degra-
dation prediction, our model minimizes the errors among
predicted α̂ versus measured coefficient α. Inspecting the
output data distribution from the left plot in Figure 3, it has
high discrepancies among different coefficient. To bring all
variables to the same range, each coefficient is normalized
in two ways by adapting [Equation 2], where αj is the jth

coefficient, which is normalized by data range (Equation
2.1) and z-score (Equation 2.2). The normalized results
are shown in the center (range) and right (z-score) plot in
Figure 3.

Figure 3. Distribution of 3 curve coefficients. ( α1,α2,α3)

Equation 2.1 : αj−norm−range = αj−αj min
αj max−αj min

Equation 2.2 : αj−norm−zscore = αj−α̃j

σαj

After range normalization, both α1 and α2 end up with
relatively concentrated distributions, while α3 is distributed
much more sparsely. This is because both α1 and α2 are
small numbers (mean of α1 is around 10−6 and mean of
α2 is around 10−3 ) that fit the experimental data, but α3
represents the initial capacity of each cell, which falls within
a narrow range between 4 to 5. As a result, α1or α2 are more
vulnerable to outliers. Therefore, z-score normalization will
be also applied, which usually mitigates the outliers effect.

4 Methodology

4.1 Neuron Network Structure

The eight basic input parameters and their augmented
forms are fed into a neural network of L hidden layers
and each hidden layer has n[l] number of neurons, where
l is a positive integer between 1 and L. Both L and
n[l] need to be tuned to optimize model accuracy (Ta-
ble 1). The activation function between layers are all
ReLu. The output layer yields the coefficients of the
battery degradation curve, as shown in Figure 3 below.

Figure 4. NN architecture assuming no correlation among
coefficients

4.2 Hyperparameter Tuning

The dataset split is 75% Training, 10% Validation, 15%
Testing. To optimize hyperparameter setting, 2640 different
models are tested and their settings are summarized in the
Table 1.

Argu Loss
Fun

Class
Weight

Neuron
Layer Optimizer Epochs

1 MSE 1:1:1 [40,10] Adam 150
2 MAE 2:1:1 [70,10] RMSprop 300
3 4:1:1 [70,40]

6:1:1 [100,40]
8:1:1 [100,70]
1:3:1 [100,10]
2:3:1 [100,70,40]
4:3:1 [100,70,10]
6:3:1 [100,40,10]
8:3:1 [70,40,10]

[ 100,70,40,10 ]

Table 1. All tuning settings, including 1. Argumentation of
input data(ith polynomial terms generated); 2.Loss Func-
tion; 3.Class Weights (Weights of each output in evaluation
metrics); 4.Neuron Layers (the ith number indicates the
neurons number in ith hidden layer); 5.Optimizer;6.Epochs
Loss Function: We customize the loss function of the
Mean Absolute Error (MAE) to that of the Mean Square
Error (MSE), which is typically used for regression losses
since larger deviation are penalized more by MSE compared
to MAE. The constant coefficient βj is added to indicate
the relatively weights for each αj , and it will be tuned as3



parameter class weight based on Table 1. to achieve the
best solution.
Equation 3.1 : MAE = 1

N

∑N
i=1

∑3
j=1 βj

∣∣αi
j − αi

jtrue

∣∣
Equation 3.2 : MSE = 1

N

∑N
i=1

∑3
j=1 βj

(
αi

j − αi
jtrue

)2

5 Results and Discussions

5.1 Baseline Model

Our NN model first uses loss function in Equation 3.1 by
weighing αj equally (βj = 1.) Figure 5 displays six examples
of original model prediction versus empirical results. In the
bottom three examples, although predicted capacities tend
to deviate slightly more from measured values as the cycle
number gets larger, errors remain in an acceptable range.
In comparison, model predictions in the top three examples
poorly match empirical outcomes at the beginning of the
aging curves, and the gaps widen as more cycles are run.
To make matters worse, some prediction trajectories end up
concave up, which drastically differ from the fitting curves
of empirical results. For example, in Figure 5b, the coeffi-
cients of the fitting curve (positive α1 and a negative α2)
and the predicted curve (negative α1 and positive α2) are
of opposite signs. These initial results show that there are
some discrepancies between the predicted curves and real
curves. Thus, an error analysis was conducted to identify
the root causes.

5.2 Error Analysis

It was found that the initial normalization method by range
(making all values range between 0 and 1) introduced signif-
icant error when calculated coefficients were scaled back up
for fitting. To solve this problem, coefficients were instead
normalized by their z scores (making the mean of all values
is 0 and the standard deviation is 1) in 5e. Comparing
5e to 5b, the improvement was noteworthy. Table 2 lists
the absolute errors of three curve coefficients (α1,α2,α3).
The model prediction over α1 has much higher error when
compared with other two coefficients. Mathematically in
a quadratic function, the coefficient of x square plays a
more defining role than other coefficients. Therefore, the
deviations of the predicted curves likely result more from
error in α1.

Figure 5. Prediction results of six individual cells. Subfigures
a-c: three examples of poor model prediction. Subfigures

d-f: three examples of good model prediction.

Table 2. Error Summary of 3 curve α predictions.

Based on the above error analysis, the unsatisfactory pilot
model outcome may have resulted from inadequacy in the
original loss function. More specifically, it fails to accurately
represent the error between the predicted aging trajectory
versus the experimental degradation curve. Specifically, as
the cycle number n increases, coefficient α1 weighs more and
more compared to α2 in the Cn calculation (Equation 1).
Mathematically, error in α1 impacts Cn more significantly
than error in α2 does. Because our current loss function
does not scale up the weight of α1, it does not fully capture
the degradation properties.

5.3 Hyperparameter Tuning Results

To improve model accuracy, different class-weights for α1,
α2 and α3 are introduced to the loss function. Figure 6
shows the prediction results, measured by R2 values, when
the considering different class-weights of the loss function
and augmentation method. The x-axis represents the data
augmentation method (e.g., one means the model only
inputs original parameters, while three means the model
inputs original parameters along with all the second power
and third power of original parameters). The lines with
different colors represent the model R2 performances using
different class-weights. Generally speaking, the prediction
R2 value increases as the class-weight ratio of α1, α2 and
α3 increases. Under both loss function choices, settings
that weigh α1 more heavily outperform the alternatives.
However, more data augmentation doesn’t seem to improve
the prediction performances – the R2 value actually drops
when more augmented data are added in all three cases.
Hence, we conclude that tuning the class weights of the loss
function plays a critical role in allowing the NN model to
produce better results.

Figure 6. Class-weights tuning results
Aside from class weights, other tuned hyperparameters
include the optimization method, the loss functions, the
number of neural network hidden layers, the number of
neuron in each hidden layers, and the number of epochs.4



Figure 7 shows the summary of tuning results. Figure 7 (a)
reveals that RMSprop performs slightly better than Adam.
Figure 7 (b) shows the effect of tuning the number epochs,
and more epochs apparently helps the model improve pre-
diction R2 values. Figure 7 (c) clearly demonstrates that
MAE has higher prediction R2 values than MSE does in all
data augmentation cases. Finally, Figure 7(d) indicates that
3-layer models perform better, which addresses the problem
of underfitting in the baseline model. As a result, our best
model result with settings combination below:

Argu Loss
Fun

Class
Weight

Neuron
Layer Opt Epochs

2 mae 8:1:1 100:40:10 Adam 150
,which result in a best R2 of 0.91.

Figure 7. Other hyperparameters tuning results. a) tuning
result of optimization method. b) tuning result of loss
function. c) tuning result of number of epochs. d) tuning
result of number of hidden layers and neurons.

In conclusion, the model performance is more sensitive to
the class-weight, loss function, and neurons of layers struc-
tures, while other hyperparameter like optimizer and epochs
have much less impact on prediction errors. Tuning hyper-
parameter helps our model improve accuracy.

5.4 Prediction Results

After adjusting the loss function and tuning the hyperparam-
eters, our updated NN model predicts battery degradation
trajectory curves much more accurately than the original
model. Figure 8 shows that compared to the original model,
predicted degradation trajectories of the updated model look
more similar to the experimental data. Although for certain
cells there are still some noticeable prediction deviations,
the overall R2 value at 0.91 means our model explains 91%
of the variance.

Figure 8. Degradation prediction of original model(left),
updated model(middle) and actual result(right)

A closer look at the prediction curves for individual cells
reveals model improvements. Figure 9 compares predictions
from the original model to those of the updated model. In
summary, the original model makes three types of mistakes
(shown in Figure 9, subfigures (a-c)): 1) predicts α1 with
positive value while the true value is negative; 2) predicts
α1 with negative value while the true value is positive; 3)
predicts α1 with larger positive value than true value. For-
tunately, our updated model is able to tackle all of the
three error cases (shown in Figure 9, subfigures (d-f)). The
prediction performance improvement from modifying the
original NN model validates the point that our updated
model accomplishes the goal of using cycling conditions to
predict cell degradation trajectories with high accuracy.

Figure 9. Prediction improvements on test cells

6 Conclusion and Future Work

In conclusion, we built a neural network model for predict-
ing the aging trajectory of Li-ion batteries under different
charging protocols. Our model takes different cycling condi-
tions as input and outputs the coefficients of the aging curve
for each individual cell. The primary results show that our
model has a R2 = 0.91 in regression fitting.
Our NN model works very well for certain battery configura-
tions and cycling conditions. As for the future work, we will
1) collecting more cell data from different manufacturers to
test the generality of our model; 2) inspecting deeper in the
error analysis in batteries itself, diagnosing those batteries
with unpredictable performance.

7 Code Availability

All code is available at https://github.com/zuyeyang/
Stanford_Battery_Project.git. Feature Process and Ma-
chine Learning were performed in python.

8 Contribution

All members of the team contributed to all aspects of the
project in general, but each member was more involved in
certain areas than others. Jihan Zhuang took the lead on5
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researching the initial topic, coding for data pre-processing,
and conducting error analysis. Benson Zu played a primary
role in building the NN model and tuning the hyperparam-
eters. Lude Rong was responsible for quantitative model
metrics and refining the writing.
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