
Predicting ground-state molecular properties using the
quantum-mechanical dataset QM7-X

Austin O. Atsango
atsango@stanford.edu

Fathelrahman Ali
fathali@stanford.edu

Sanjari Srivastava
sanjari4@stanford.edu

Abstract

Developing flexible, reliable, and widely generalizable methods to predict molec-
ular properties at low computational cost is an important goal in computational
chemistry. Various machine learning architectures have been developed to achieve
this goal, but many training procedures are inflexible or suffer from a low quality
of training sets. Here, we use a relatively simple graph convolution network ar-
chitecture to predict the total and atomization energies for the recently published
QM7-X dataset, which contains reliable and tightly converged properties for a com-
prehensive subset of small organic molecules. Our results show strong correlation
between actual and predicted values, with R2

dev values of 0.95 and 0.92 for total
and atomization energies respectively.

1 Introduction

The accurate prediction of ground-state molecular properties—such as total energies, atomization
energies, and dipole moments—is a key objective in computational chemistry that typically involves
conducting computationally costly quantum mechanical calculations [1]. One way to alleviate the
associated computational cost is to train a supervised machine learning model to predict desired
molecular properties. However, many such attempts are plagued by datasets (such as the GDB
datasets [2, 3, 4]) that either contain only a small subset of the relevant chemical space, have
unreliable data, or lack vital information that would be useful for the full deployment of machine
learning approaches such as graph convolution networks [5].

Here, we present the results of a scheme for predicting total and atomization energies for an exten-
sive subset of small organic molecules using graph convolution networks(GCNs). We utilize the
recently published quantum mechanical dataset QM7-X [5], which contains 42 chemical properties
of molecules with up to seven non-hydrogen atoms and is freely available online. QM7-X improves
on earlier benchmark datasets such as QM9 [6] and ANI-1x [7] by providing a systematic, extensive,
and tightly converged set of physical properties mostly computed using the rigorous hybrid density-
functional PBE0 with MBD dispersion [5]. Additionally, QM7-X circumvents the issues of earlier
datasets, e.g. by providing the chemical structure for each molecule, including structural isomers,
stereoisomers, and several nonequilibrium structures.

2 Related Work

The earliest machine learning approaches to predicting molecular properties focused on engineering
inputs/features to encode molecular symmetries such as translational and rotational invariance. These
approaches ranged from the use of radial and angular symmetry functions by Behler and Parrinello [8]
to the so-called Bag of Bonds model used by Hansen et al [9]. They involved feeding hand-designed
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features as inputs to either high-dimensional neural networks or kernel methods and were applied
successfully to the prediction of molecular forces and energies. As large-scale molecular datasets
became widespread, more flexible architectures that modeled the invariances inherent in molecular
systems became desirable. One attractive candidate was convolutional neural networks (CNNs),
which were pursued because of their translational equivariance. A particularly successful architecture
in this domain was SchNet, a model that combined recurring embedding and interaction layers
with continuous-filter convolutional layers to deliver rotationally invariant energy predictions with
state-of-the-art (SOTA) accuracy [10]. However, because CNNs do not naturally contain all molecular
symmetries, SchNet still utilized extensive feature optimization through multiple atom-wise and
interaction blocks as well as radial basis functions to assert rotational invariance.

Due to the isomorphism between molecules and graphs, graph neural networks, generally classified
as Message-Passing Neural Networks (MPNNs) [11], have been pursued for molecular property
prediction. In these models, atoms are encoded as nodes while interatomic connections (e.g. molecular
bonds) are encoded as edges. One can more easily incorporate into MPNNs the translational and
rotational symmetries usually observed in molecules. Various implementations of MPNNs have
previously been applied to the prediction of crystal structure energies [12], chemical reactivity [13],
and partial charges [14]. MPNN models such as equivariant graph neural networks have been used
to predict molecular properties in the QM9 dataset, achieving SOTA accuracy [11, 15]. To our
knowledge, MPNNs are yet to be leveraged to predict properties in the recently published QM7-X
dataset. Here, we design an architecture based on a message-passing implementation of GCNs and
apply it to the prediction of total and atomization energies in the QM7-X dataset.

3 Dataset and Features

The QM7-X dataset contains molecular data for 4.2 million equilibrium and non-equilibrium struc-
tures. To collate the data, we utilized the qchem library [16]. Since the QM7-X dataset contains ∼100
structures per molecule, we first filtered the data to find the optimized (lowest energy) structures for
each molecule. This eliminated redundancy and improved the efficiency of sampling by condensing
4.2 million structures into ∼42,000 representative structures, one for each molecule. This filtering
step also enabled us to obtain a computationally tractable subset of the dataset that did not overwhelm
computer memory. We then encoded molecular graphs using the parallel schemes described below.
Three representative molecules in the dataset are shown in Fig. 1, and the preprocessing step is
illustrated in the first panel of Fig. 2.

3.1 Scheme A

The first scheme utilizes a framework that explicitly accounts for atomic positions in the molecular
graph. To achieve this, atoms are encoded as nodes with only 4 features: the atomic number and the
corresponding X, Y, and Z coordinates. The graph object is also fed a node positions matrix built
from interatomic distances. All inter-atomic pairs are encoded as bidirectional edges between their
corresponding atoms, and there are no edge features.

3.2 Scheme B

For the second encoding scheme, we converted the filtered structures into SMILES (simplified
molecular-input line-entry system) strings, which were subsequently fed into the cheminformatics
package RDKit [17] to extract features and labels. We used an initialization scheme inspired by
the Open Graph Benchmark (OGB) [18] that utilizes the pytorch geometric package [19] to build
molecular graphs. In this scheme, atoms are encoded as nodes with 9 features which include the
atomic number, chirality, the number of chemical bonds, the formal charge, the number of attached
hydrogen atoms, the number of radical electrons, hybridization, aromaticity, and whether or not
the atom exists in a ring. Molecular bonds are encoded as bidirectional edges connecting their
corresponding atoms. Finally, graph edges are given three features (bond type, conjugation status,
and bond stereochemistry) corresponding to their respective bond. Atomic positions are not explicitly
used in modeling.
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(a) (b)
(c)

Figure 1: Sample molecules from the QM7-X dataset

4 Methods

Our model is summarized in Fig. 2. This work utilizes graph convolutional networks (GCNs), which
were initially built as a robust approach for semi-supervised learning on graph-structured data [20].
The GCN scheme exploits a first-order approximation of localized spectral filters on graphs [21, 22]
to derive the following propagation rule across layers:

hl+1 = σ(D̃− 1
2 ÃD̃− 1

2hlW l) (1)

Where σ is an activation function, W l is a layer-specific weight matrix, hl are the node embeddings
for a layer l, Ã = A+ IN is an n× n (n = number of nodes) adjacency matrix (Aij = 1 if i and j are
connected by an edge, else 0) with added self connections (IN is the identity matrix), and D̃ is the
augmented degree matrix, D̃ii =

∑
j Ãij . Here, D̃− 1

2 ÃD̃− 1
2 is derived from the graph Laplacian,

and is a mathematical operator that generalizes traditional image convolution to arbitrary molecular
graphs [11]. After GCN propagation, a single vector is obtained per graph using a readout layer that
takes a simple mean of the node embeddings:

xG =
1

|V|
∑
v∈V

h(L)
v (2)

The graph vector is then passed through a single-layer neural network for final target prediction.

Figure 2: Model architecture. The GCN model was first introduced in [20] and is borrowed from
there.

5 Results and Discussion

Our procedure involved training various iterations of the GCN model described in the Methods
section to predict for total and atomization energies using the encoding schemes A and B. For both
schemes, we used a mean squared error (MSE) cost function and an Adam optimizer for numerical
efficiency. We trained on 41,254 molecular structures with a 90/10 train/validation split. The train/dev
split was chosen to maximize the size of the training set while simultaneously leaving a substantial
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number of structures (∼4000) in the validation set. The labels (total and atomization energies) were
’normalized’ by subtracting their respective standard deviation and dividing by the mean in order
to make the parameter space more favorable for optimization. This normalization procedure was
observed to improve prediction accuracy. The results for both schemes are detailed in the subsections
below.

5.1 Scheme A

Here, we trained a baseline model containing 3 GCN layers with 10 hidden channels each. An Adam
optimizer with a learning rate of 0.002 was observed to have the best performance. Hyperparameter
exploration revealed that this scheme was consistently outperformed by the more detailed Scheme
B; a sample of the results from this model is shown in Fig.4a in the Appendix. Due to this gap
in performance, all further experiments were conducted with Scheme B, which relies on SMILES
strings to extract more descriptive features.

5.2 Scheme B

We conducted a hyperparameter search by varying the number of GCN layers and the number of
hidden units per layer. For all architectures, we used a learning rate α =0.005 and trained for 100
epochs because these settings had performed favorably in preliminary experiments. A sample of the
results for the search is shown in Table 1, with prediction accuracy measured via R2 values for the
training and dev sets.

Index Number of
GCN
hidden
layers

Number of
GCN
hidden
units

Total
Energy
R2

train

Total
Energy
R2

dev

Atomization
Energy
R2

train

Atomization
Energy
R2

dev

1 3 5 0.9246 0.9186 0.7778 0.7606
2 3 10 0.9288 0.9221 0.9045 0.8977

3 3 15 0.9559 0.9512 0.8185 0.8042
4 3 20 0.9414 0.9329 0.8489 0.8410

...

11 5 15 0.9261 0.9193 0.9090 0.9003
12 5 20 0.9269 0.9211 0.9157 0.9064
13 6 5 0.9110 0.9041 0.7555 0.7414
14 6 10 0.9265 0.9076 0.8818 0.8735
15 6 15 0.9299 0.9231 0.9040 0.8992

16 6 20 0.9271 0.9200 0.9221 0.9143
...

Table 1: A sample of R2 values obtained from hyperparameter exploration. The best observed models
for total energy and atomization Energy are colored red and blue respectively

Table 1 shows that the GCNs applied here have relatively low variance, as demonstrated by the
fact that R2

train and R2
dev are usually separated by only ∼ 0.01 and as such, overfitting is not a

concern. We also observe that while the prediction of total energy is most accurate with a relatively
low number (3, marked red in Table 1) of GCN layers, the prediction of atomization energy is most
accurate when there are more (6, marked blue in Table 1) GCN layers. The predictions for both
energy values are more accurate with a relatively large number of hidden units (15 for total energy
and 20 for atomization energy), which is higher than the number of input channels in both cases (9
features per node). The best-performing architectures for total and atomization energies respectively
were isolated for further hyperparameter tuning, but this did not lead to appreciable increases in
accuracy. Ultimately, our models perform better on predicting the total energy (R2

train, R2
dev = 0.956,
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0.951 respectively) than they do predicting the atomization energy (R2
train, R2

dev = 0.927, 0.920
respectively). Correlation plots for the best-performing architectures are shown in Figures 3a and 3b.

(a) (b)

Figure 3: Comparison of the actual and predicted total energies (left) and atomization energies (right)
for the training and validation set, as well as the accuracy as represented by the R2 values

The observed R2 values correspond to mean absolute errors (MAE) of 1.03% and 2.17% for total
and atomization energies respectively. Although there is strong correlation between the predicted
and actual energy values, our observed accuracy is considerably lower than that of SOTA models
such as SchNet, which usually report mean absolute errors in the milli-electronvolt range (< 0.002%
MAE) [10, 11]. This discrepancy in accuracy can be attributed to the high complexity of molecular
encoding schemes used in SOTA models, which typically utilize specially designed basis functions
and/or elaborate recurrent networks to optimize internal molecular representations [11, 15]. Our
data suggests that we might benefit from a more complex molecular encoding scheme. The stratified
nature of the correlation plots in Figures 3a and 3b shows that the GCN model predicts similar
energies for many distinct molecules, suggesting that our molecular encoding scheme might not be
sophisticated enough to adequately capture subtle differences between input molecules.

The observed high accuracy of SOTA models might be due partly to overfitting. Figure 5a in the
Appendix shows the results obtained when a SchNet model trained on the QM9 dataset is used
to predict total energies in the QM7-X dataset. Even though the SchNet model yields accurate
predictions for a majority of the molecules, it exhibits poor performance for molecules with energies
below -10,000 eV. This demonstrates an inability of the SchNet model to generalize beyond a certain
energy range.

The results obtained from our GCN model are promising given its simplicity and the fact that it does
not utilize atomic positions. They suggest that one way to systematically improve accuracy would be
explicitly inlcude atomic positions and adopt a more elaborate molecular encoding scheme.

6 Conclusions and Future Work

Our results demonstrate that GCNs are powerful tools in molecular property prediction, yielding
high correlation (R2

{train,dev} = 0.9559, 0.9512 for total energy and R2
{train,dev} = 0.9271, 0.9200

for atomization energy) between predicted values and ground truths and low variance despite a
relatively simple molecular encoding system. The distinct optimal training schemes—deeper GCNs
for atomization energies and shallow GCNs for total energies–highlight the need to tailor GCN
architectures to particular target properties, although it would be instructive to investigate whether
we can apply multitask or transfer learning. Furthermore, the correlation plots between actual and
predicted properties show that the GCN model could benefit from a more elaborate scheme for
encoding molecular features. Future work should focus on optimizing the encoding scheme, e.g.
by using recurrent neural networks to model atomic positions and their interactions. In this regard,
neural fingerprinting architectures [23] are a promising scheme to explore. Our results suggest that
employing such a scheme may push our model’s performance closer to SOTA.
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7 Contributions

• Austin Atsango: Data preprocessing, GCN implementation, hyperparamter search using
Scheme B, report preparation.

• Fathelrahman Ali: Data preprocessing, video preparation.
• Sanjari Srivastava: Explored dataset extraction using scripts provided by authors of QM7-X

(we finally used qchem instead), implemented and trained the baseline GCN with encoding
Scheme A, video preparation.
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8 Appendix

8.1 Scheme A Results

The figures below show the performance of the encoding scheme A on predicting both the total and
atomization energies.

(a) Comparison of actual vs predicted Atomization
Energies for training and validation set (Scheme
A)

(b) predicted vs actual eAT after 100 epochs over
500 validation examples (Scheme A)

8.2 SchNet’s Performance on QM7-X

The figure below shows that applying a SchNet model trained using QM9 to predict the total energies
of molecules in QM7-X leads to poor performance for molecules with energies below -10,000eV
(lower left corner).

(a) Actual v/s predicted total energies by SchNet
on QM7-X
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