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Abstract

Every year, more than 25% of the elderly population in the United States experience
debilitating injuries, such as falls, which can lead to broken bones and major
injuries. These injuries may go unreported, and the compounding health effects can
significantly deteriorate quality of life [1]. Alternatives such as constant monitoring
by trained personnel is impractical due to the cost, time, and restrictions this places
on an individual’s living accommodation. These issues motivate the development
of a remote health monitoring system that tackle problems ranging from logging
patient vitals to identifying high-risk accidents.
We train C3D, ResNet-18, ResNet-50, ResNet-101, ResNeXt-101 models on 9
healthcare-related actions from the NTU-RGB+D dataset. When the models are
trained from scratch, the validation accuracy saturates at 53% for ResNet-50,
ResNet-101 and ResNeXt-101. However, models pre-trained on Kinetics-600
have sufficient information to further train the deeper layers and can match ex-
isting state-of-the-art systems (84%). We further show that for real world de-
ployment we can trade-off accuracy for resource efficiency, i.e., MobileNetV2
achieves 7% decrease in accuracy for 36x fewer paramters and 25x fewer floating
point operations. Our work is publicly available and can be downloaded here:
https://github.com/reetikaag/human-activity-recognition

1 Introduction

1.1 Description

Remote health monitoring can allow healthcare facilities, such as hospitals or assisted living facilities,
to monitor patient health from a distance by automatically sending relevant data to healthcare
providers. This can reduce the need for at-home caretakers and ensure immediate response in case of
emergencies. Such a healthcare monitoring system would classify the actions of the patient, create
logs of symptoms throughout the day, and alert the healthcare provider in the event of an anomaly. In
this project, we train a neural network with nine medically-relevant actions for action recognition
in patients. The input to our neural network is a video clip of a human action, and the output is a
prediction of the action class (e.g. sneeze/cough, chest pain, falling down, etc).

1.2 Key Ideas

We explore three main trends in video classification research:
(i) 3D CNNs have been shown to outperform 2D CNNs as a natural way to encode spatiotemporal
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information [2]. For the action classification task, we primarily focus on 3D CNNs which span from
relatively shallow (C3D) to very deep networks (ResNet 3D/ResNeXt 3D).
(ii) Previous successes of 2D CNNs are owed to very deep networks that were pre-trained on ImageNet.
Recently, [3] showed that similar pre-training of very deep 3D CNNs on large scale video datasets,
such as Kinetics-600, can effectively train a neural network with a video representation. We build on
their work by using deep 3D CNN architectures that are pre-trained on closely-related action classes.
(iii) 3D CNNs are computationally expensive due to the additional kernel dimension. In addition to
classification accuracy, we use resource efficiency as a metric to compare different architectures. We
evaluate pre-trained resource efficient 3D CNNs [4] such as MobileNetV2 [5], ShufflenetV2 [6] and
SqueezeNet [7], which have fewer FLOP (floating point operations) than ResNets, yet can provide
reasonable accuracy.

1.3 Challenges

The action classification task is challenging for many reasons. Firstly, some of the nine actions
have subtle differences and closely resemble each other. An example is shown in Figure 2, where
the action classes headache, chest pain and neck pain vary only in terms of a slight shift in hand
placement. Secondly, the models are constrained to predict activity using only raw RGB images. The
top three benchmarks on NTU-RGB+D dataset combine pose/raw depth and RGB images to boost
performance [8]. Since such pose/depth information may not be always available and adds additional
constraints to training and deployment, we limit our methods to rely only on a single modality.

Figure 1: Sample frames from the NTU RGB dataset - headache, chest pain, neck pain

2 Related Work

Two-stream 2D CNNs using both RGB and optical flow was a popular method in many earlier works,
owing to pre-training on ImageNet [9, 10]. Jie et al. proposed using 3D CNNs [11] for extracting
spatiotemporal features and Tran et al. trained a 3D CNN architecture, known as C3D [12], on the
sports 1M dataset. Carreira et al. introduced the Inflated 3D CNN (I3D), [2] achieving state-of-the-art
performance in some benchmarks. For deep 3D CNN architectures, Hara et al. extended famous
ImageNet architectures such as ResNet [13], Wide ResNet [14], and ResNeXt [15] to their 3D
counterparts [3].

3 Dataset

For the proposed healthcare application, we acquired permission to use the NTU RGB+D dataset
from the Rapid-Rich Object Research Lab (ROSE) at the Nanyang Technological University, Singa-
pore [16]. This dataset consist of 114,480 video samples for 60 action classes. We focus on a subset
that consists of 9 medically-relevant action classes. These action classes are: sneezing/coughing,
staggering, falling down, headache, chest pain, back pain, neck pain, nausea/vomiting and fanning
self. The ROSE dataset consists of 8532 1920x1080 RGB videos. Due to the small set of examples,
we decided to omit the test set and perform an 80/20 training/validation split (6825 training/1707
validation videos). Stratified sampling is used to eliminate any sampling bias.

3.1 Data pre-processing

All videos are pre-processed to split them into individual jpg frames and scale the individual frames
down from 1920x1080 to 427x240 pixels. The size of each video sample is 3 channels x N frames
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x 240 pixels x 427 pixels, where N is number of frames per video and can vary between 33 to 222.
Both spatial and temporal pre-processing are performed on the dataset. For spatial pre-processing,
all frames of the video are center-cropped to 240 x 240 pixels to remove unnecessary background
information. To prevent over-fitting, we randomly select a spatial scale from [1.0, 0.97, 0.94, 0.91,
0.88] in order to perform multi-scale cropping, as was done in [17]. A scale of 1 means that the output
is 240 x 240 pixels, whereas a scale of 0.88 means the output size is 211 x 211 pixels. The scales are
chosen by manually analyzing 100 video samples to ensure that cropping does not lead to removal of
the target subject. Post-cropping, we spatially resize the resultant images to 112 x 112 pixels using
bilinear interpolation. Finally, the input is normalized using the mean and standard deviation values
of the ActivityNet dataset [18] for each color channel, and each sample is horizontally flipped with
50% probability during training.

Next, we perform temporal pre-processing to reduce the number of frames from 33-222 to 16. Since
the action most distinctly occurs in the middle of the video, we pick 32 frames from the center of
each video clip and then down-sample by 2 to generate the 16 frames. Looking at a 32-frame window
is critical to capturing the full content of longer actions, such as staggering and falling down. The
final size of the pre-processed video is 3 channels x 16 frames x 112 pixels x 112 pixels.

C3D
ResNet3D

Efficient 3DCNN

Original video : 1920x1080 Original video is split into 83 
constituent frames and scaled 
down to 427x240 pixels

Temporal cropping: center 32 
frames are selected and 
downsampled by 2x to 
generate 16 frames

Spatial cropping: background is 
cropped and image is further 
scaled to 112x112 pixels. Image 
is also flipped horizontally with 
50% probability

Figure 2: Data pre-processing pipeline

4 Methods

4.1 Network Architecture

We implemented three state-of-the-art models, which are described below. The detailed structure of
all models are included in the github repository.

4.1.1 C3D

C3D [12] is widely seen as a de-facto standard for 3D CNNs. Given its popularity and widespread
adoption, it is included as a benchmark for comparison with the other models. The architecture has
11 layers with 8 convolutions, 5 max-pooling, and 2 fully connected layers, followed by a softmax
output layer with 9 neurons. Similar to [2], we used batch normalization after all convolutional
layers to improve performance.

Figure 3: C3D architecture.C3D net has 8 convolution, 5 max-pooling, and 2 fully connected layers,
followed by a softmax output layer.

4.1.2 ResNet/ResNeXt 3D

ResNet 3D/ResNeXt 3D [19] is a deep architecture consisting of 18, 50, 101, 152 or 200 layers that
has shown to outperform C3D, P3D, two-stream I3D [2, 20] and many other 2D CNN models in
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action recognition tasks [3]. ResNets have skip connections, which allows for very deep networks.
In this project, we explore the importance of deep networks by comparing the ResNet models with
18, 50 and 101 layers. For ResNext, we use 101 layers and a cardinality of 32 to compare it against
ResNet-101.

4.1.3 Efficient 3D CNNs

These are light-weight deep 3D CNNs architectures that use group convolutions [21] and/or depthwise
separable convolutions [22] to reduce computations. In this project, we focus on MobileNetV2,
ShuffleNetV2 and SqueezeNet architectures, since these are deeper models and are expected to
perform better than shallower resource-efficient models [4].

4.2 Implementation Details

Training: For all training, we use Stochastic Gradient Descent (SGD) with categorical cross-entropy
loss. We choose a mini-batch size of 64 videos to balance memory usage and speed of training. Given
the GPU limitations and large numbers of planned experiments, we limit the number of training
epochs to 50, even though training for more epochs may improve the performance. The momentum,
dampening and weight decay are set to 0.9, 0.9 and 1 × 103, respectively. We experimented with
learning rates and chose 0.001 for the first 40 epochs until the validation loss saturates, and reduce
it by a factor of 10 for the last 10 epochs. We compare results of both training from scratch and
fine-tuning models pre-trained on Kinetics-600. For fine-tuning, we freeze the original network
parameters and fine-tune only on the last fully connected layer.

Validation: For the validation set, we apply center crop to obtain a square image, rescale the image to
112 x 112 pixels, normalize and temporally crop the image to extract the 32 center frames, followed
by downsampling by 2x. For all models, we report top 1 accuracy and top 2 accuracy, MFLOPs
(floating points operations in units of 1× 106) and number of trainable parameters.

5 Experiments and Results

Pre-training with representative datasets: In order to understand the effects of pre-training on our
dataset, each model is both trained from scratch and fine-tuned, with pre-training on Kinetics-600
dataset. The results show significant improvement when pre-trained models are used. The accuracy
of ShuffleNetV2 is improved by 19% and the accuracy of ResNet-101 is improved by 31%. This
result replicates the result in [3] that pre-training on megascale video datasets allows spatio-temporal
3D CNNs to retrace the success of ImageNet and 2D CNNs.

Figure 4: Accuracy comparisons between all models - trained from scratch vs pre-trained

Effect of model layers: We validate the relationship between the number of layers in ResNet and the
video recognition accuracy. Table 1 shows that the accuracy of ResNet 3D improves by 12.5% as the
model depth increases from 18 to 101, indicating that deeper CNNs perform better.

Accuracy vs model complexity: Table 1 shows that the architectures with more parameters and
FLOPs, such as ResNet and ResNeXt-101, generally achieve higher accuracies. The exception is
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C3D, which achieves poor accuracy, due to the lack of pre-training. MobileNetV2 has inverted
residual blocks, which excel at capturing dynamic motions, leading to its superior performance when
compared to ShuffleNetV2 and SqueezeNet [5]. MobileNetV2 also achieves better performance than
ResNet-18, despite having 14x fewer parameters and FLOPs. The results show that MobileNetV2
and SqueezeNet are better choices for applications that need light-weight neural network, since they
provide lower complexity for a slight reduction of 6% in accuracy, compared to ResNet-101.

Number of Accuracy (%)

Model Layers Non-linearities Params MFLOPs Top 1 Top 2

C3D 11 10 78M 33164 51.6 69.8

ResNet-18 18 9 33.03M 8323 71.3 85.4
ResNet-50 50 17 46.22M 10128 81.5 93.0
ResNet-101 101 34 85.26M 13957 83.8 94.2
ResNeXt-101 101 34 47.54M 9650 83.0 94.4

3D-MobileNetV2 53 35 2.37M 560 77.8 90.8
3D-ShuffleNetV2 51 34 1.31M 194 70.2 86.8
3D-SqueezeNet 18 18 1.84M 921 73.6 89.6

Table 1: Accuracy and complexity comparison of 3D CNN models

Precision, Recall and Confusion Matrix: Figure 5 shows the confusion matrix for the best perform-
ing model, ResNet-101. As shown in Figure 1, the neck pain and headache actions closely resemble
each other, and Figure 5 confirms that the model confuses between these two actions. In contrast,
the falling down, staggering and fan-self actions have very distinct signatures, and the model rarely
mis-classifies them.

In addition to accuracy, having a low recall is crucial to avoid missing an adverse health-related event.
The more alarming actions of falling down/staggering have a very good recall at 98%, whereas chest
pain has a recall of 72%.

Figure 5: Confusion matrix, precision and recall of all action classes

Saliency Maps: We use saliency maps to visualize the parts of each image that maximize the class
score. Figure 6 shows the original image, where we first average all the RGB channels, followed by
an averaging over the 16 frames of the video. Below that is the corresponding saliency map which
is also an average of the saliency map of all 16 frames. Localized actions such as sneeze-cough
and fan-self show localized heat-map, whereas for more dynamic actions such as staggering, the
importance is spread over more pixels.
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Back pain Fan self Sneezecough Staggering

Figure 6: Saliency maps to visualize contribution of different parts of image to the class score

6 Discussion and Conclusion

We demonstrate the benefits of resource-efficient architectures, pre-trained 3D CNNs, and strategic
pre-processing for action recognition task. Despite the subtle differences in some of the actions,
our best-performing model, ResNet-101, achieves 84% accuracy on the validation set. The best-
performing resource efficient model, MobileNetV2, achieves 78% accuracy with 36x fewer parameters
and 25x fewer FLOPs than ResNet-101. Lastly, we achieve 50% top-1 accuracy and 67% top-2
accuracy on our own dataset.

7 Contribution

Reetika was responsible for running Efficient 3D CNN and C3D, and data pre-processing. Myra and
Raj were responsible for running ResNet 3D, and collecting and testing on our dataset. All members
contributed to the report and video. We would like to thank CS230 TAs for their guidance.
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