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Abstract

Have you ever seen a map and wondered what exists just beyond its borders?
This project adapts state of the art methods from the field of image outpainting to
procedurally expand large-scale terrain maps repeatedly in any and all directions.
First an image outpainting model is trained to generate map tiles consistent with
a single adjacent source tile. Then, by adapting the generator architecture to two-
dimensional case, transfer learning is applied to quickly train a second model to
generate map tiles consistent with two adjacent source tiles. By using both models
in concert, large-scale terrain maps can be extended with procedurally generated
content in any direction.

1 Introduction

Procedural Terrain Generation is the task of creating realistic environments for simulations, video-
games, or other purposes. Many algorithms exist for generating terrains at a near-human scale,
using methods ranging from deep neural networks to physical erosion simulations. However, far
fewer methods exist for procedurally generating terrain on the scale of islands, continents, and world
maps. The methods which do exist for this generally require hand-designed features, like mountains,
plateaus, and troughs, which can be warped and overlayed onto a height map. Though this approach
can create realistic maps occasionally, it is inconsistent and requires significant human oversight.

The goal of this project is to use methods and insights from image outpainting research to expand
large-scale maps containing realistic features on land, sea and the shorelines in between. The input
to this algorithm is an array of topological heights covering a fixed-size square tile. Two generative
models are then used in concert to generate multiple new heightmap tiles which can be attached
around the input tile.

2 Related work

2.1 Image Outpainting: NS Outpaint

Unlike image inpainting, image outpainting operations can be repeated recursively to expand an
image arbitrarily. Unfortunately, most image outpainting methods degrade significantly in quality
over multiple generation steps, and converge towards a kind of eigenvalue of low-quality, unchanging
images. The NS-Outpaint algorithm, developed by Yang et al. (2019), was designed specifically to
combat this issue. Figure 1 shows the performance of this method over multiple generation steps,
compared to other outpainting methods which exhibit degrading quality.
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Figure 1: Multi-step outpainting comparison against NS-
Outpaint (labeled RCT+SHC). The Pix2Pix and Contextual
Attention (CA) methods highlight the degrading quality and
convergence of most outpainting methods over multiple gen-
eration steps. Yang et al. (2019)

Figure 2: Recurrent Content Transfer
(RCT) Module. Yang et al. (2019)

Figure 3: Skip Horizontal Connection
(SHC) Module. Yang et al. (2019)

The general architecture of NS-Outpaint is one common in both inpainting and outpainting methods:
An encoder-decoder network that is trained adversarially against a local discriminator (focusing only
on newly generated content) and a global discriminator (focusing on the expanded image as a whole).
This occurs in Gardias et al. (2020), Zhang et al. (2019), and many more inpainting and outpainting
methods. The latent state between encoder and decoder represents encoded information about the
original image, and is used to generate an adjacent latent state of the same shape, which represents
encoded information about the original image’s adjacent neighbor. Both latent states are decoded
together, producing a reconstruction of the source image adjacent to a newly generated image.

The algorithm achieves sustained quality and long-distance information transfer with two particularly
important modules.

First, the Recurrent Content Transfer (RCT) module (Figure 2) uses a two-layer LSTM to generate a
new latent state conditional on the original encoded latent state. This sequence model approach allows
significantly improved ability to communicate detailed feature information across long distances.

Second, the Skip Horizontal Connection (SHC) module (Figure 3) operates in the decoder stage,
and provides a skip connection from the partially-encoded features of the original image to the
corresponding partially-decoded features of the original (not newly generated) half of the decoded
image. This significantly improves the reconstruction of the original given image, and improves
consistency and smoothness along the border between the two images, since features from the original
image can propagate across the border to affect nearby features in the generated image.

3 Dataset and Features

3.1 Data Source

The dataset that chosen for this project is the SRTM 15+ dataset, a compilation of height measurements
both on land and underwater, spanning the entire globe at a resolution of 15 arc seconds per pixel,
which is approximately 50,000 m2 at the equator. To limit geographic warping at the poles, this
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project dataset only accesses latitudes between -80 and 80 degrees. The overall image over those
bounds has dimensions 86,400 x 38,400 pixels. Scripts automatically download and store this entire
area in 576 separate windows with 10 degrees to a side. A separate algorithm can then stitch together
these windows to create an image corresponding to any longitude and latitude bounds, down-sampled
to any desired resolution.

3.2 Data Format

Pixel values have only 1 channel, which is their height in meters. Given the importance of the zero
meter threshold (sea level), the dataset is not completely normalized, but has been scaled down to
facilitate model training.

To allow experiments at different coordinate scales, different resolutions, and varying filters, the
original SRTM 15+ dataset is stored separately from specific dataset versions which can be compiled
for particular models. To generate a specific dataset for training and testing a model, a sliding window
with fixed width and height is passed over all available coordinates, and each resulting image is
down-sampled to a fixed resolution, resulting in a dataset which contains many partially overlapping
images. These compiled datasets also support filtering samples by minimum landmass and height
variance, as well as augmentation through vertical and horizontal mirroring.

For this project, models were trained on image tiles with 20 degrees longitude/latitude to a side. This
tile size was chosen since samples of that size often contain interesting information about landmasses
and shorelines, while limiting the number of samples which contain near-uniform heights, especially
underwater, which would otherwise risk biasing models to just generate near-uniform outputs. The
final datasets were also augmented with vertical and horizontal mirroring, resulting in a dataset with
10,944 samples. Appendix A shows some examples from the dataset.

3.3 Dataset Difficulty Scaling

In order to facilitate fast iteration, especially during the early exploration stages of the project, in
which many differing architectures were implemented, each architecture went through a few training
tests on different datasets before full-scale training. First, a toy version of the architecture, with fewer
layers and channels, was trained on a dataset compiled with lower resolution (64x64), filtered to have
a standard deviation of at least 10m and at least 5% of total area above sea level. After confirming
initial results match expected results, the model was scaled up to its full architecture, and the dataset
increased to its intended resolution (128x128), with filters removed.

4 Methods

4.1 Problem Specification

The overall algorithm operates on square map tiles, each with 128x128 one-channel pixels corre-
sponding to 20x20 degrees. There are two sub-problems which must each be solved in order to
arbitrarily extend source map tiles.

• One-dimensional expansion: Generating a new tile given an adjacent source tile. This
considers consistency along only one edge.

• Two-dimensional expansion: Generating a new tile given three neighboring source tiles,
attached along two sides and the diagonal in between.

4.2 Generator Architecture

The core model of the project is a version of the NS-Outpaint architecture with fewer convolutional
channels. The base architecture of NS-Outpaint is incredibly intensive, with 119 million param-
eters trained for 1,500 epochs. Due to the relative simplicity of the heightmap dataset, and the
time/computation limitations of a single-person course project, I reduced the maximum number of
channels in any layer of the network from 1024 to 256, resulting in a parameter count of 9.75 million
while retaining much of the generative power of the original network. The encoded representations
under this architecture are now 256 channels at each of 16 spatial locations in the image.
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Additionally, I made one further alteration to the core NS-Outpaint architecture. Initial models were
predisposed towards producing images with a grid-spaced distortions, which Odena et al. (2016)
attributes to strided transposed convolutions, since they often have uneven kernel overlap in their
outputs. At their suggestion, I replaced each transposed convolution layer with a nearest-neighbor
upsampling layer followed by a normal convolution layer, which immediately removed the artifacts,
as seen in Appendix B. It’s likely that enough training would mitigate these artifacts, but given
limitations on training time, faster convergence to realistic outputs was a high priority.

Multiple other additions to the architecture were tested, including the addition of NoisyAdaIn blocks
inspired by StyleGAN in Karras et al. (2018), which renormalize channel activation statistics to a
distribution determined by a transform on the latent state, but the best-performing architecture in the
end was the downsized NS-Outpaint architecture with nearest-neighbor upsampling layers.

4.3 Two-Dimensional Generator Adaptation

This core model can only solve the one-dimensional expansion sub-problem, which is also the limit
of the NS-Outpaint architecture. It is not designed to maintain feature consistency along more than
one side at a time. To achieve two-dimensional expansion while maintaining the benefits of the core
one-dimensional architecture, I adapted the NS-Outpaint architecture into a two-dimensional format.

Instead of taking a single map tile (128x128) and producing two attached map tiles (256x128), the
two dimensional adaptation takes three attached map tiles (three quadrants of 256x256) and produces
four attached map tiles (256x256).

• Since convolutional layers are spatially independent, the convolutional components of the
NS-Outpaint architecture can be applied to 256x256 images instead of 256x128 images
without any change.

• Since SHC modules only affect the partially-decoded features which spatially correspond
to the source map tile (by passing a skip-connection from that source map tile’s partially
encoded features), they can also be easily adapted to the two-dimensional case. The same
SHC module and parameters can be used three times to apply the skip-connection operation
to the partially decoded features for each source map tile.

• To adapt RCT layers (which use sequence models to generate new latent representations
along one axis) to the two-dimensional case, I apply the same RCT module and parameters
from both directly adjacent source tiles. The final latent state for the target tile is just the
average of the latent states generated by expanding from each directly adjacent latent state.

One crucial advantage of adapting NS-Outpaint modules, rather than using a separate approach, is
that it is amenable to transfer learning, since the generator modules are unchanged, and are simply
applied multiple times on different parts of the image. As such, after training the one-dimensional
generator, the two-dimensional generator could be initialized with the trained parameters from the
one-dimensional generator, and fine-tune from there. Initial performance of the two-dimensional
generator using only the pretrained weights can be found in Appendix D.

4.4 Discriminator Architecture

Local and global discriminators were implemented based on the NS-Outpaint specification, which
uses modified Wasserstein discriminators (Arjovsky et al. (2017)) to output an unbounded score for
each input image, which characterizes how likely the image is to be real.

4.5 Loss Functions

The overall loss function for each generator had three components: masked reconstruction loss,
global discriminator loss, and local discriminator loss. Masked reconstruction loss is computed as the
L1 norm of the difference between generated and real images, with diminishing weights for pixels
further into the generated region. Global and local discriminator loss contributions were weighed
relatively at 0.18% and 0.02% compared to reconstruction loss, based off the relative weights in the
NS-Outpaint implementation.

The generator was subject to L2 regularization with a constant of 0.00002, while discriminators were
subject to gradient-magnitude penalty with a weight of 10.
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4.6 Training and Evaluation

The one-dimensional generator was trained on inputs with two adjacent map tiles, and was required to
reproduce the both map tiles using only information from the left tile. The two-dimensional generator
was trained on inputs with four adjacent map tiles in a square, and was required to reproduce all
four without using the top-right map tile. Evaluation was done based on loss values, computed
regularly against a held-out validation set. Example generations were also saved at regular intervals
for qualitative assessment.

5 Experimental Results

After only 10 training epochs, the one-dimensional generator could successfully extend large-scale
structures, specifically shorelines, into the generated tile, though low-level details and textures
were wildly inaccurate. After 50 training epochs, the one-dimensional generator could extend
particular textures into the generated tile, even introducing new local details like the beginnings of
new landmasses. After this point, training curves become more unpredictable as discriminator loss
becomes comparable to reconstruction loss. After 100 training epochs, however, the one-dimensional
generator can create remarkably realistic extensions, which can predict large-scale structures such
as seas and even small-scale textures such as mountainous regions. At this point, validation loss
plateaus, and the model improves at a much slower rate.

The two-dimensional generator learned even faster, since its weights were initialized from the trained
one-dimensional generator. Within 10 epochs it was successfully extending landmass shapes and
adding rudimentary textures. After 50 epochs, its performance on single generation steps was more
realistic than the one-dimensional generators, a consequence of extrapolating from more adjacent
image tiles.

With both models trained to produce realistic 1-step extensions of map tiles, they can finally be used
in concert to expand a map tile indefinitely in any directions. The results are consistent between map
tiles, and individual map tiles contain realistic low-level textures. However, repeated generation steps
also revealed model flaws which were not visible when training on single generation steps. Firstly, as
noise compounds over generation steps, the boundaries between tiles become far clearer. Secondly,
both models are biased towards producing thin wavy island chains, and has trouble maintain straight
lines over multiple tiles, resulting in chaotic shorelines.

Appendices C and D show examples throughout the training of each model, and Appendices E and
F show the final results of repeated expansion in one and two dimensions. Given the size of these
images, they require appendix pages to properly display.

6 Conclusion

The main drawback of this approach is the large model size and long training times, which make it
difficult to iterate over different architectures and hyperparameters. Since I did not have the time for
an exhaustive architecture search, my best-performing architectures are likely unnecessarily large,
and future work could search for smaller successful model sizes.

There are two main avenues for improving results further in future work. Firstly, simply training for
longer periods. The original NS-Outpaint architecture was trained for 1,500 epochs, whereas my
models were trained for a maximum of 100 epochs at a rate of one epoch per hour. Secondly, these
models can be trained directly on multiple generation steps, rather than just one at a time. This could
even apply to training both the one-dimensional and two-dimensional generators in concert, so they
must reconstruct three quadrants of an image given just one.

Over all, the application of NS-Outpaint architecture to long-distance heightmap expansion in two
dimensions was a success. A reduced-size NS-Outpaint architecture with upsampling layers can
successfully expand heightmaps in cardinal and diagonal directions, even with reduced training times.
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A Dataset Examples

Examples from the SRTM 15+ data source, compiled into map tiles of 20x20 degrees and 128x128
pixels. White represents sea level, while red and blue represent height above and below sea level
respectively.

B Grid Artifacts: Transpose Convolution vs Upsampling

Illustration of the predisposition towards grid artifacts when using strided transpose convolutions
as opposed to upsampling layers. In both cases, the generator has no access to the right half of the
original image. The model using transpose convolutions (top) shows clear grid-pattern artifacts even
after 60 training epochs. The model using nearest-neighbor upsampling layers (bottom) has no such
issue after just 50 training epochs.
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C One-Dimensional Generator Training

The examples below demonstrate the training progress of the one-dimensional generator inspired by
NS-Outpaint architecture. The generator learns to extend large-scale landmasses very quickly, and
slowly refines the level of detail it adds to the generated image.

Epoch 1

Epoch 10

Epoch 50

Epoch 100 (Complete)
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D Two-Dimensional Generator Transfer Learning

The following images illustrate the training progress of the two-dimensional adaptation of NS-
Outpaint architecture. The generator has access to only the three quadrants (top-left, bottom-
left, bottom-right) of the shown original image, and must generate the missing quadrant. Since
generator parameters are initialized with the trained values from the one-dimensional generator,
initial performance is quite good, with only a slight loss of detail and a few visual glitches along the
quadrant borders to show for the transfer. By the end of training, the two-dimensional generator can
generate realistic extensions to landmasses, and even predict lakes and islands which occur only in
the generated region.

Epoch 1 with Pretrained Weights

Epoch 50 (Complete)
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E Long Distance One-Dimensional Generation

The following examples contain 6 map tiles, with one real map tile on the left, followed by 5
sequentially generated tiles to the right.
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F Long Distance Two-Dimensional Generation

The following generated examples are seeded with a single real map tile in the bottom left, and has a
total of 143 generated map tiles.

Generated (360 degrees longitude by 160 degrees latitude)

Real-World Comparison
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