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Abstract
The Southern sea otter (Enhydra lutris nereis) is a keystone predator and a protected marine
mammal that inhabits the California coast and beyond. Current methods to study otters are
expensive, inaccurate, and inefficient. To improve the use of resources for government officials,
ecologists, and other researchers, we are proposing an auto-detection algorithm using drone
aerial imagery as inputs. Using 842 images of sea otters from Monterey Bay and 1018 back-
ground images extracted from online datasets, we labeled, clustered, and augmented images
to train a modified version of YOLOv5. The resulting model with a 75% F1-score and 26%
mAP0.5:0.95 outperforms human performance as it detects otters that remained undetected to
humans in the labeling process and were later identified.

1 Introduction
The Southern sea otter (Enhydra lutris nereis) is a marine apex predator that forages in coastal waters throughout
the Northern Pacific. As a keystone predator, sea otter populations and their foraging behaviors can have a
significant impact on the biodiversity and overall health of kelp forest ecosystems [1]. The Southern sea otter
is listed as “threatened” under the Endangered Species Act. Since 1982, the California Department of Fish and
Wildlife, the U.S. Geological Survey, U.S. Fish and Wildlife, and the Monterey Bay Aquarium monitor the sea
otter population with an aerial survey (plane or helicopter) in the spring and fall every year.

This surveying task is expensive, time-consuming, and yields 1-2 values for sea otter population sizes per year.
Given the technological advances in commercial aerial imaging and machine learning statistical algorithms, current
monitoring protocols may potentially be replaced by these technologies someday. The objective of this project
is to develop an algorithm that can successfully detect sea otters in aerial imaging. The data has been directly
coordinated with U.S. Fish and Wildlife, California Fish and Wildlife, and Sea Otter Savvy with applications in
policy, marine science, and oil spill reconnaissance procedures.

Unlike in other natural images, sea otters in UAV RGB imagery are very small, with high variability in acquisition
lighting and weather conditions. Moreover, datasets are usually small due to sampling constraints. These
conditions pose a major challenge in terms of both precision and detection speed. In response to this challenge,
and based on the ideas proposed in Pham et al.[2] and Liu et al.[3], we modified the YOLOv5 model [4] to
improve its performance on small object detection. Using RGB images as inputs and obtaining bounding boxes
around the sea otters as outputs, the modified YOLOv5 improved the original YOLOv5 model F1 and mAP0.5:0.95
scores by 7.8%, and 3%, respectively.

2 Related Work
The field of computer vision has been extensively explored over the past years, primarily as a consequence of
the great advances in deep learning. Object detection is one of the most popular tasks due to the wide range of
applications and improvements in recent years. Broadly, we can divide object detection tasks into 2 categories:
two stage detectors, such as Fast R-CNN [5], Faster R-CNN [6], R-FCN [7], Feature Pyramid Network [8], Mask
R-CNN [9], etc., and single stage detectors, such as YOLO [10] and all its improved versions (YOLOv2, YOLOv3,
YOLOv4, and YOLOv5), EfficientDet [11],etc. In general, two-stage detectors favor detection accuracy while
one-stage models are faster [2].
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UAV object detection has been an active research topic over the past decade. Several researchers have proposed
models that focus on small object detection [2], [3]. Pham et al. [2] added several modifications to the YOLOv3
model, including the removal of two coarse detection levels and replacing them with two finer detection levels as
well as the removal of some layers from the backbone. Their experiments on multiple datasets show a ∼ 4.5%
mAP score increase on average. Liu et al. [3] optimized the Resblock by concatenating two ResNet units that have
the same width and height. Moreover, the authors increased the convolution operation at an early layer to enrich
spatial information. Their experimental results show that UAV_YOLO improved YOLOv3 mAP results by ∼ 3%.

In marine science, there have been a few applications such as the work done by Gray et al.[12], where they used a
CNN to detect sea turtles in drone imagery. To increase the sampling size, Gray et al. cropped the images around
each labeled sea turtle. While they have a 76.5% recall, their model’s precision hovers at 16.3%. Researchers
have also monitored other marine megafauna such as sharks [13], whales [14], and birds [15]. Sharma et al.[13]
proposed method obtained a 90.04% precision, however, the authors did not disclose any other metrics, and the
number of epochs ranged from 60,000 - 70,000. Even if these results are very promising, UAV marine animal
detection remains an open challenge.

3 Dataset
3.1 Raw Data
During the months of July-October of 2020, aerial images (n = 842) with a resolution of 5472 x 3648 pixels were
collected, showing sea otter presence. The distance from sea level ranges from 20-100m at 4 locations in Monterey
Bay. Images were also recorded in various weather conditions. This metadata is included in the filenames for
future purposes. Given this dataset, we employed a train-validation-test split of 84%-8%-8% on the 842 total
images (see Table 1).

Dataset #Images #Otters #Imgs w/ Ott. #Ott. / Img
train 702 5507 702 7.845
validation 70 609 69 8.7
test 70 554 70 7.914

Table 1: Mavic2Pro DJI Drone Sea-Otter Imagery Dataset
3.2 Resizing
All images were originally 4K DNG files. Files were converted to JPG format and downscaled to 1024 x 682. We
chose this resolution to allow our model to train faster but still keep enough resolution for the otters since some of
them are a few pixels in size. Sea otters tend to be at the center of the image, and their size tends to be between
1% and 2%of the image size.

3.3 Labeling
To train our YOLO model we manually labeled all the images using the software LabelImg [16]. It took ∼ 30
hours in total and was done by a single researcher so that images were labeled with the same subjectivity. Other
classes such as kayak, seal, boat, and bird were labeled as well for future purposes, given their little occurrence in
the dataset.

3.4 Image Clustering
Some images were taken in succession while the drone was flying over the sea otters. Hence, successive images
are highly similar with the otters at different positions since some of them were swimming and others went
underwater. This caveat could potentially lead to overfitting if two successive images were split between the
training set and the test set. Inspired by Flomo[17], we used a pretrained VGG model and modified the last layer
to get a feature of size 4,096 that represents each image. Then, we downsized this feature vector to 50 using
Principal Component Analysis and finally applied k-means to find the image clusters. We used the elbow method
to find the optimal number of clusters, which turned out to be 50. From these clusters, we selected 42 clusters for
the training set, 4 different clusters for the validation set, and the remaining 4 clusters for the test set.

3.5 Background Images
The primary focus of the sea otter study that provided us with the dataset was to understand behavioral changes in
sea otters in the presence of commercial drones. Consequently, most images include sea otters, and there are no
background images, which are treated as negative samples in the dataset. Open source background images from
an oyster reef survey [18] and an Arctic cetacean study [14] were collected to supplement the original dataset,
adding 1,018 images.
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3.6 Image Augmentation
Given the small size of our dataset and to improve our model performance, we employed several data augmentation
techniques. These included Hue-Saturation-Value (HSV) augmentations, scaling, rotation, and vertical/horizontal
flip. Image shearing does not occur due to the experimental design of image capturing, so we neglected translation
and shearing augmentations. Additionally, we also applied mosaic data augmentation, a data augmentation
technique available on YOLOv5[4], which combines random ratios of image tiles into a single image.

4 Methods

4.1 Proposed Model
Inspired by the existing literature on small object detection presented in section 2, we modified the original
YOLOv5 model to include a detection level for small objects. Moreover, we removed the detection level for big
objects since all objects are small in size in our study. In Figure 1, we can see highlighted in gray the layers that
we added to the original model.

Figure 1: Proposed YOLOv5 model for small object detection, modifications are grey.

4.1.1 Loss function
In this work, we have used the original loss function from YOLO [19] (see equation 1). This loss function can
be broken into three parts: (i) bounding box coordinates and size prediction, (ii) confidence score, (iii) and class
prediction. All three parts are Mean-Squared error losses, which are modulated by lambda parameters. Two
indicator functions are used to (1) penalize classification if the object is present in the grid cell and (2) penalize
bounding box coordinates if that box has the highest IoU. One important thing to note from the function is that
width and height parameters are under a square root. This helps penalize smaller bounding boxes, which is
necessary in this project.
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4.1.2 Anchors
Given our proposed model, it has been necessary to compute anchors sizes that fit the new detection levels. To this
end, we used the autoanchor function included in YOLOv5[4], which computes the most optimal anchors for the
given dataset using a genetic algorithm.

5 Results
5.1 Evaluation Metrics
Given the purpose of this project, we have chosen F1-score and mAP-score as our main performance indicators.
With these two metrics, we are assuring that we detect as many otters as possible while not overly estimating the
sea otter population and keeping bounding boxes close to ground truth. From the two metrics, we have chosen
mAP as our main performance indicator to be able to compare our results to those from the research community,
which has adopted mAP as the main metric.

• F1: Harmonic mean of precision and recall. F1 = 2(P · R)/(P + R).

Precision (P): ratio of true positives and all positive predictions.
Recall (R): ratio of true positives and all positive ground truth.

• mAP (mean Average Precision): Mean of the area under the precision recall curve.
It is important to note that for determining whether a predicted outcome is a true positive or a false positive,
the Intersection over Union (IoU) ratio is used. Specifically, the IoU ratio is the amount of overlap between the
predicted bounding box and the ground reference bounding box.

5.2 Hyperparameters
For the experiments presented in the following section, we used YOLOv5 default hyperparameters. The default
values for some of the most important hyperparameters are:

• Initial learning rate: 0.01

• Final learning rate: 0.1 (1 cycle learning rate policy is applied. The learning rate changes after every batch).

• SGD momentum: 0.937

• IoU training threshold: 0.2
These parameters were later fine-tuned using the validation set (see section 5.4).

5.3 Experiments
As noted extensively in class, the process we have followed has been iterative. The first experiment that we
did was running YOLOv5 with default hyperparameters for 300 epochs and a batch size of 32 to get a baseline
performance. We chose a batch size of 32 since it is the maximum value we can use without going out of memory,
while we still benefit from a reduced training time. Besides, we had to train with a maximum image size of 768px
due to memory limits. Given that the validation loss steadily decreased for 300 epochs, we decided to run the
model for a higher number of epochs to observe how many epochs are required before overfitting occurs. After
running the baseline model for 500 epochs with no observations of overfitting, we performed error analysis and
discovered that nearly identical images were being included in the training set as well as in the validation set. This
issue led us to cluster our images (see section 3.4 for more information).

After the previous step, we run the vanilla model again and performed error analysis on it. The main problems we
detected and the solutions we found are presented in Table 2.

Detected Problem Proposed Solution
1 Sunlight and glint cause false positives Include background images
2 Farther distances cause false negatives Modify YOLOv5 to include a detection level for small objects

Table 2: Main problems detected using error analysis.

As we can seen in Table 2, one of the problems we detected was that images with substantial sunlight and glint
had more false positives. To solve it, we gathered ocean images from online datasets to add as background images
to our training set (see section 3.5 for more information). From Table 3, we can see that with the background
images F1-score improved 1.8%.

After the implementation of the previously mentioned solution, we modified YOLOv5 architecture to include
a detection level for small objects (see section 4.1 for more information). As seen in Table 3, this modification
yielded to a increase of 8.2% and 2.8% in the F1 and mAP0.5:0.95 scores, respectively.
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5.4 Hyperparameter Tuning
During the training of model 3, we recorded the validation loss for every epoch. With this information, we were
able to detect that the model was overfitting when running it for 500 epochs. We observed that the validation
loss decreased until 200 epochs and subsequently started increasing. Therefore, we trained it again for only 200
epochs.

Given that YOLOv5 has over 30 hyperparameters used for various training settings, we decided to use the provided
genetic algorithm that searches for the best hyperparameters [4]. Specifically, using the weights from the best model
as the initial weights, we performed 100 evolutions of 10 epochs each. We modified the weights of the fitness
function to also consider precision and recall ([P = 0.1,R = 0.1,mAP@0.5 = 0.1,mAP@0.5 : 0.95 = 0.7]).The
resulting hyperparameters were used to retrain the best model for an extra 100 epochs.

5.5 Model Results

Training Test
Experiments F1 mAP@0.5 mAP@0.5-0.95 F1 mAP@0.5 mAP@0.5-0.95

1. vanilla clusters 0.601 0.584 0.21 0.675 0.667 0.229
2. clust. + background 0.609 0.578 0.227 0.693 0.695 0.23
3. clust. + background + modified_arch 0.666 0.662 0.2505 0.757 0.748 0.257
4. clust. + background + modified_arch + param. tuning F 0.761 0.76 0.265 0.753 0.756 0.259

Table 3: Results from the different experiments.

Table 3 includes an overview of the performance of each of the presented experiments. Moreover, in Figure 10,
we can find the evolution of these performance metrics for the best model (model 4).

(a) (b) (c) (d)

Figure 2: Performance results from the best model. (a) Precision (b) Recall (c) mAP 0.5 (d) mAP 0.5:0.95

6 Discussion
Looking at the results presented in the previous section, it is clear that we have been able to improve the model
performance on every iteration. As it has been mentioned before, error analysis has been key to find the weak
points of every model and define possible solutions that may improve its performance. Given the small dataset
size and the variability of the images (height of drone and environmental factors), we believe our results are very
promising as even when reviewing the predictions from the test set, the model found otters the labeler missed,
meaning that it’s currently more accurate then a human and will only improve once these are corrected.

7 Conclusions and Future Work
In this work, we have presented a modified version of the YOLOv5 model specifically crafted for small object
detection in an oceanic environment. From a baseline YOLOv5 model, we have iterated to find a model with
good performance metrics. With the different modifications we have introduced, we have obtained successful
results. However, we think that the characteristics of our dataset hinder the performance of the presented model. If
a bigger and more diverse dataset was to be collected, further experiments could be carried out. As future work, a
two-stage detector could also be explored, even though its speed might not be suitable for certain applications.

As it has been mentioned in the beginning, other classes were labeled in addition to sea otters. Future work of
interest would include the detection of these classes if the number of instances per class was to become sufficient
in a bigger dataset. Besides, from the labeled images multiple information could be extracted: size of the sea otter
population in the areas of interest, sea otter behavioral analysis from a labeled video, proximity relationships,
public policy for UAV heights above marine mammals, and at-risk animals in oil spills.
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8 Contributions
Given the extension and the different requirements of this project, it has been very beneficial to have an interdisci-
plinary team. Daly provided the sea otter data as well as oceanographic knowledge to ensure methods and analysis
were logical for its application. She also labeled the images and found the background images. Parés-Morlans
explored the related work on small object detection and designed the new architecture. Moreover, she performed
error analysis, clustering, and hyperparameter tuning. Together with Salman, they performed image augmentation
and ran the experiments. Salman also explored tiling the dataset and did all the setup for the experiments in
Google Colab and AWS.

9 Code Availability
The code is available at the following GitHub repository https://github.com/carlotapares/cs230_otters.
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Appendices

9.1 Labeled examples

(a) (b) (c)

Figure 3: Labelled examples. Green indicates True Positive. Red indicates False Positive. Blue indicates False Negative.
(a) Example with all labels correct (b) Example with a detected otter that remained undetected by a human while labeling
(c) Example with errors.

9.2 Hyperparameter Tuning

In Figure 4, we can see the results of running the genetic algorithm for 100 generations. Each subplot shows
fitness (y axis) vs hyperparameter values (x axis). Yellow indicates higher concentrations. Vertical distributions
indicate that a parameter has been disabled and does not mutate.

Figure 4: Hyperparameter value scatter plot from the different generations.
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9.3 Sample Raw Images

(a) (b) (c) (d)

Figure 5: Sample images from the Mavic2Pro DJI Drone Imagery Dataset.

Figure 6: Example of large-scale image and sub-image.

9.4 Sample Background Images

(a) (b) (c) (d)

Figure 7: Sample background images.

9.5 Sample Image Augmentation

(a) (b) (c)

Figure 8: Sample Image Augmentation. Output generated by YOLOv5 using the user-defined hyperparameters.
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9.6 Overfitting
As it can be seen in Figure 9, the validation loss started to increase after epoch 200. Consequently, we trained the
model for 200 epochs to avoid overfitting and have a worse performance on the test set.

Figure 9: Training vs Validation Loss from model 3.

9.7 Tiling
As mentioned before, sea otters have a small size compared to image size. To increase the otter to ocean pixel
ratio, we created a second dataset with the original images divided into 8 tiles with size 256x341 each. As the
image was split into even amounts, the center of the image was split horizontally and vertically. Given that this is
the area where the majority of otters reside, 50% of the otters got their body cropped. Thus, we didn’t proceed
further with this approach.

(a) (b) (c) (d)

Figure 10: (a) Sea otter image position. (b) Sea otter size on image (c) Histogram of bounding box height (d) Histogram of
bounding box width.

9.8 Precision-Recall curve

In Figure 11, we can see the precision-recall curve of model 4.

Figure 11: Precision-Recall curve

9


	Introduction
	Related Work
	Dataset
	Raw Data
	Resizing
	Labeling
	Image Clustering
	Background Images
	Image Augmentation

	Methods
	Proposed Model
	Loss function
	Anchors


	Results
	Evaluation Metrics
	Hyperparameters
	Experiments
	Hyperparameter Tuning
	Model Results

	Discussion
	Conclusions and Future Work
	Contributions
	
	Labeled examples
	Hyperparameter Tuning
	Sample Raw Images
	Sample Background Images
	Sample Image Augmentation
	Overfitting
	Tiling
	Precision-Recall curve


