
Automated identification of lateral plant root emergence points
(Computer vision)

Meiqi Yang (meiqi@stanford.edu) & Vivian Zhong (vivzhong@stanford.edu)

I. Introduction

Studies concerning plant characteristics often require analysis of large amounts of images, and often require
manual annotation of features of interest. In many cases, this amounts to an object detection task. For our project, we
collaborated with Dr. Johannes Scharwies, who is investigating the hydropatterning phenotypes of nearly 300 different
strains of corn, each with a different genome (DNA). Hydropatterning refers to how plant root development changes in
response to the presence or absence of water in the soil1, and could play a role in determining a plant’s drought response.
In particular, our collaborator is interested in identifying areas of corn DNA that influence the extent to which the plant
initiates root development in dry vs wet conditions. This requires the tedious task of manually counting lateral (secondary)
root emergence points across hundreds of root images, a task which we sought to automate. The input of our algorithm is
a plant root image. We then use a YOLOv4-based single-class object detection model to predict bounding boxes for
lateral root emergence points. For the purposes of our collaborator’s study, the ultimate result of interest is the number of
emergence points predicted by the model for a given root image.

II. Related work

Previous neural networks designed to analyze plant root images have all leveraged CNNs with encoder-decoder
configurations2–4. However, these algorithms were all tailored for segmentation tasks such as tracing root length and
counting total number of lateral roots. We are instead interested in identifying the point of lateral root emergence on a
given side of the root. Segmentation performs well when there is a clear foreground and background, which is not present
in our images. Neither we nor our collaborator were able to identify any pre-existing algorithm suited for this exact task.

YOLOv45 is considered the state-of-the-art model for fast and accurate object detection, thus we leveraged it as
the base model for our project. Like the aforementioned algorithms, YOLOv4 also leverages convolutional layers for
encoding and decoding input images. However, instead of learning to apply accurate segmentation masks, YOLOv4
learns to draw accurate bounding boxes around the objects of interest. YOLOv4 also accommodates a higher resolution
input image (412x412) than the segmentation algorithms (256x256), which is useful for accurate detection of objects that
are very small, as is the case with our images’ root emergence points. YOLOv4 has previously been used to detect apples
amongst foliage with a mean average precision of 96.9%6.

III. Dataset and Features

The initial dataset consisted of 1512 RGB root images with a combined 53097 human-annotated lateral root
emergence points (example in Fig. 1A), with each point represented as a xy-coordinate (Fig. 1B). The 1512 images are all
paired, with each root being imaged from two sides (the slice parameter in Fig. 1B). Each side represents a different
growth environment (wet soil vs dry soil), hence the need to identify emergence points as opposed to simply counting
total lateral roots present in an image. Each image has a width of 300 pixels and a variable height (median=5726,
min/max=[1329, 7361]) (Fig. 2, Appendix A).

Image processing
The images were scaled by our collaborator such that each pixel in each image represents the same real-life

distance. An algorithm7 was also used to digitally straighten all the roots. YOLOv4 incorporates the Mosaic method of
data augmentation, which combines 4 images into one for training, thus improving detection of objects outside their
normal context.5 Since we did not encounter high variance issues in our initial training, no additional data augmentation
was performed.

All images were converted from TIFF to JPG, and bounding box labels were generated to fit the darknet format.
We automatically generated bounding boxes for the training images by treating the human-annotated emergence point
coordinates as centers of uniformly-sized square bounding boxes. For developing our model, we employed a 90/10
train/validation split. All bounding boxes were initially set to width and height of 40 pixels, as determined by sampling
measurements using the ImageJ software.

mailto:meiqi@stanford.edu
mailto:vivzhong@stanford.edu
https://www.zotero.org/google-docs/?QY1GgD
https://www.zotero.org/google-docs/?f0brDE
https://www.zotero.org/google-docs/?dlXSys
https://www.zotero.org/google-docs/?RdOAqv
https://www.zotero.org/google-docs/?N7TqCG
https://www.zotero.org/google-docs/?X5SCTv

IV. Methods

Our base algorithm was based on the most up-to-date darknet implementation of the YOLOv4 model (Fig. 38,
Appendix A). Like previous YOLO object detectors, YOLOv4 employs a convolutional neural network to compress the
features of the input image (backbone), followed by feature aggregation (neck), and ending with object detection (head).
The YOLOv4 model learns to predict coordinates that describe a bounding box around the object of interest (localization)
and assign the object a class label (classification). To do so, it trains on input images and their respective ground truth
bounding boxes and class labels by optimizing a Complete Intersection over Union (Eq. 1)6 loss function. Unlike basic IOU
(Eq. 2), CIoU captures the distance between non-overlapping ground truth and predicted bounding boxes. A key aspect
of YOLO is the use of a non-max suppression (NMS) algorithm to ensure that an object is detected only once: for a given
set of overlapping boxes, as determined by a tunable IoU threshold, the algorithm keeps only the predicted box with the
highest probability, filtering out any lower probability boxes.

V. Results

Measuring accuracy
The standard measure of accuracy when evaluating YOLO models is mean average precision (mAP, equivalent to

AP in this context), generally defined as the area under the precision-recall curve (Eq. 3). Precision and recall are
respectively calculated from the number of true positives, false positives, and false negatives (Eq. 4). Whether a predicted
box is considered a true positive or false positive (compared to the ground truth bounding box) is determined by a
tunable IoU threshold, typically set to 0.5. For deciding whether or not to make a bounding box prediction, we used the
default confidence threshold of 0.25 for all our measurements, since in most cases it gave us the best F1 score (Eq. 5),
indicating the optimal compromise between precision and recall (Fig. 4).

https://github.com/AlexeyAB/darknet
https://www.zotero.org/google-docs/?1QvHzi
https://www.zotero.org/google-docs/?q6YNWF

Baseline implementation
We used pre-trained weights (trained on the MS COCO dataset) and the original YOLOv4 architecture. For

detection, we used weights from the 6000th iteration, the minimum recommended by the authors of YOLOv4. After that
point, the loss tended to trend upward (Fig. 5) in our initial training. We initially followed all recommended defaults for
hyperparameters (e.g. batch size, number of iterations, number of CNN filters, training iterations, and input image size)
(Appendix B). Learning rate and anchor box dimensions were integrated into the source code and were left untouched.
While testing different modifications to our model, we made various adjustments to the training data and
hyperparameters, as described below.

Training data modification
Grayscale conversion

In our dataset, most of the roots have a yellowish color, whereas some root images have a distinct blue tint (Fig.
6, Appendix A), which might add unnecessary noise and make prediction more difficult. We converted all images to
grayscale images in an attempt to eliminate this noise. However, model performance worsened after applying this change
(Table 1, model 2), possibly because the model relies on the color of the emergence points to make predictions, and
converting to grayscale resulted in information loss.

Poor-quality data filtering
When training models 1 and 2, we noticed that the validation accuracy was higher than the training accuracy,

which suggested the presence of low quality data in the dataset, which would be more likely to appear in the larger
training set than the validation set. Upon examining the dataset, we discovered images where the human-labelled
emergence points were completely off the mark (Fig. 7, Appendix A). We manually removed all poorly-annotated images,
which reduced the training set from 1512 images to 1491. While this did not improve model performance (Table 1, model
3), it did result in the training accuracy becoming slightly higher than the validation accuracy, as expected.

Bounding box size
The baseline model yielded a much lower value for recall than precision, which suggested that the model failed

to detect more emergence points than it falsely classified (more false negatives than false positives). During error analysis,
we discovered that this usually happens when the emergence points are densely clustered together (Fig. 8A, 8B). In this
case many of the bounding boxes overlap. Since the model’s NMS algorithm removes overlapping bounding boxes, we
hypothesized that reducing the bounding box size might help the model retain more bounding boxes when they overlap
due to highly proximal emergence points.

Fig. 9 shows a comparison of models trained with 35x35 px bounding box and 40x40 px bounding box. As
expected, reducing the bounding box size allows us to detect more overlapping emergence points, but at the cost of

https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4.cfg

reduced precision, since smaller boxes contain less information and makes it harder to detect emergence points
accurately (Table 1, model 5).

Hyperparameter tuning
Non-max suppression IoU threshold

In addition to changing the training annotation bounding box size, we hypothesized that another way to reduce
the likelihood that a legitimate bounding box would be removed by the NMS algorithm would be to increase the IoU
threshold for considering two boxes to be duplicates. The default YOLOv4 threshold was 0.45; we increased this to 0.75
across all instances when NMS was called in the detector source code. Recall and mAP increased slightly compared to the
baseline for lower IoU thresholds (Table 1, model 4) while precision decreased slightly or remained unchanged,
suggesting a possible reduction in false negatives and/or increase in false positives. Example validation images with
model-annotated boxes seem to confirm this (Fig. 8C). However, this is not entirely congruous with the unexpected result
that the total number of detected emergence points decreased slightly from 9452 to 9031.

Input image dimension
By default, YOLOv4 resizes images to 412x412 before using it as an input to the convolutional network. Since our

images have, on average, an aspect ratio of 0.05:1, we hypothesized that making the aspect ratio less square would
reduce the distortion of features and loss of information in the height dimension, thus leading to improved feature
learning by the convolutional network. This change could be especially helpful for making the correct NMS calls on
overlapping bounding boxes, particularly given the small size of our objects. We trained a model with image input
dimensions of 160x832. Since this results in a decrease in number of pixels (160*832=133,120 compared to
412*412=173,056), any improvement in model performance would not be attributable to an increase in input image
resolution.

This modification resulted in a remarkable improvement in model performance (Table 1, models 6, 7). Model 6
achieved the highest mAP score on the validation set of all the models we tested. In fact, it achieved greater accuracy

(mAP@0.5=79.2%) than the original YOLOv4 did on MS COCO using a higher input image resolution of 608x608
(mAP@0.5=65.7%)5.

Evaluation of model in the research study
context

The original research motivation for
developing this object detector was to count
the number of lateral roots that emerged from
either side of the primary root, in order to
determine the degree to which emergence
occurred preferentially on the “contact” side
(in contact with moisture) as compared to the
“air” side (exposed only to dry air). To gauge
whether or not our best models were accurate

enough for the purposes of the study, we used the model’s detection results to calculate the number of emergence points
on either side of a given root. We then used a Wilcoxon signed-rank test9 as a proxy for gauging how closely the model’s
predictions resembled the human annotations. As shown in Table 2, the distribution of point counts for each root image
predicted by the two models employing non-square input image dimensions (6, 7) were not significantly different from the
corresponding ground truth point counts. Meanwhile, the difference between points counts predicted by the two models
(3, 5) employing square input image dimensions and the ground truth points counts would be considered significant for
any commonly-used p-value threshold.

The ultimate metric that our collaborator requires for his research is the ratio of emergence points on the air side
versus on the contact side (“air:contact ratio”). Fig. 10 shows that the distribution of error (difference) for this metric when
determined by model 6 is more centered and tightly clustered around 0 as compared to model 3. A better metric of error
is taking the absolute value of the difference and dividing by the human-annotated value; however, due to division by 0,
the distribution is difficult to show. The average of this error metric was lower for model 6 (0.24) than for model 3 (0.35), as
expected.

VI. Conclusion and Future Work

Setting the dimension of the image that is fed into the model’s convolutional network to an aspect ratio more
similar to the dataset image dimensions resulted in the clearest improvement in model performance, beating the basic
YOLOv4 model’s MS COCO performance. Decreasing the size of the bounding box in the training dataset annotations
and increasing the IoU threshold for the NMS algorithm decreased the number of false negatives at the cost of increased
false positives; further tuning of these attributes could result in a more significant increase in model accuracy.

One almost guaranteed improvement that can be made would involve manually re-annotating the dataset
images, since we noticed many instances of unlabelled emergence points (Fig. 11, Appendix A) that likely provided
conflicting information to the model. Another easy improvement would involve increasing the input image resolution
(requires longer training time), which should be particularly beneficial since our objects are very small (<1% of the average
image area). Furthermore, since using an input image aspect ratio with greater similarity to dataset image aspect ratio
seems to improve model performance, we can try splitting all of our images into equally-sized chunks and preserve the
chunk aspect ratio for the input image, thus avoiding any distortion. Finally, an updated version of YOLOv4,

Our collaborator will be generating another batch of root images in the future, which will require the same
emergence point annotation as the dataset we worked with here. Since YOLO algorithms have been shown to perform
well when detecting the same object in a different context10, we expect the model developed here to retain its accuracy.

Contributions

Both team members contributed to all aspects of the project.

https://www.zotero.org/google-docs/?laUv23
https://www.zotero.org/google-docs/?OWR7jK
https://www.zotero.org/google-docs/?TOHE7k

References

1. Robbins, N. E. & Dinneny, J. R. Growth is required for perception of water availability to pattern

root branches in plants. Proc. Natl. Acad. Sci. 115, E822–E831 (2018).

2. Yasrab, R. et al. RootNav 2.0: Deep learning for automatic navigation of complex plant root

architectures. GigaScience 8, giz123 (2019).

3. Gaggion, N. et al. ChronoRoot: High-throughput phenotyping by deep segmentation networks

reveals novel temporal parameters of plant root system architecture.

http://biorxiv.org/lookup/doi/10.1101/2020.10.27.350553 (2020)

doi:10.1101/2020.10.27.350553.

4. Falk, K. G. et al. Computer vision and machine learning enabled soybean root phenotyping

pipeline. Plant Methods 16, 5 (2020).

5. Bochkovskiy, A., Wang, C.-Y. & Liao, H.-Y. M. YOLOv4: Optimal Speed and Accuracy of Object

Detection. ArXiv200410934 Cs Eess (2020).

6. Wu, L., Ma, J., Zhao, Y. & Liu, H. Apple Detection in Complex Scene Using the Improved

YOLOv4 Model. Agronomy 11, 476 (2021).

7. Lobet, G., Pagès, L. & Draye, X. A Novel Image-Analysis Toolbox Enabling Quantitative Analysis

of Root System Architecture1[W][OA]. Plant Physiol. 157, 29–39 (2011).

8. Lyu, J. et al. Extracting the Tailings Ponds from High Spatial Resolution Remote Sensing Images

by Integrating a Deep Learning-Based Model. Remote Sens. 13, 743 (2021).

9. Wilcoxon signed-rank test. Wikipedia (2021).

10. Science, O.-O. D. Overview of the YOLO Object Detection Algorithm. Medium

https://medium.com/@ODSC/overview-of-the-yolo-object-detection-algorithm-7b52a745d3e0

(2018).

https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p
https://www.zotero.org/google-docs/?IjIm2p

Appendix

A. Figures

Figure 2. Image height distribution.
Mean = 5429, min = 1329, max = 7136, median = 5726.

Figure 3. Architecture of YOLOv4

B. Initial training configurations modified in cfg/yolov4-custom.cfg file:
- height = 416
- width = 416
- max_batches = 6000
- steps = 4800, 5400 - (80% of max_batches), (90% of max_batches)
- filters = 18 - (# of classes + 5) * 3
- classes = 1

https://github.com/AlexeyAB/darknet/blob/master/cfg/yolov4-custom.cfg

