
CS230 Final Report: Multivariate Wikipedia Web
Traffic Time Series Forecasting Using Clickstream

Graph Embedding

Eric Liu
Stanford Center for Professional Development

Stanford University
ericxliu@stanford.edu

1 Problem Statement

Accurately forecasting traffic of web pages can
provide guidance for capacity planning, input for
application performance optimization, and many
more practical use cases. In this work, we focus
on this page forecasting problem by using the
daily views of the Wikipedia pages time series
dataset.

Naively, for any multivariate forecasting prob-
lem, a model can individually learn and predict
the time series based on historical values. This
method, however, might not scale up well, if deal-
ing with a very large number of time series. In-
tuitively, a better approach is to learning concep-
tually similar time series and forecast their trend.
In this work, we explore a few time series em-
bedding techniques, including a random integer
embedding, a simple trainable embedding layer,
graph embedding using the Clickstream for user
jumping from one page to the other, as well as
Wikipedia2Vec, an embedding based on page con-
tent. Overall, we hypothesise a good embedding,
like Clickstream and Wikipedia2Vec should out-
perform others since they provide a richer context
for the models.

2 Dataset and Features

2.1 Time Series Data Source

The main data source is the data dump of the
Wikipedia page per entity per day from the Wiki-
media Foundation’s Analytics Engineering team.
[1]. Specifically, the raw Pageview table has the
following format.

• wiki_code (subproject.project)

• article_title

• page_id

• daily_total

• hourly_counts

We use data from Jan 1st, 2018 to Jan 1st, 2021,
spanning in total of 1097 days.

2.2 Page Feature Data Source

2.2.1 Click-Stream and Node2Vec

In addition, we use the Wikipedia Clickstream
graph[2] , which contains the relationship be-
tween pages in terms of how often people navi-
gate from one page to another. The data format is
transformed into:

• prev_page

• curr_page

• n_clicks

where prev_page and curr_page refer to the
referrer and resources wiki pages pairs, and
n_clicks refers to number of click through in a
month. We use the extract of Clickstream data in
Jan, 2018.

To better incorporate wikipage and its click
stream graphs into the time series model, we
choose Node2Vec as a method of graph embed-
ding. Node2Vec is a popular graph node em-
bedding methods. Here we use it to encode the

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

click stream graph to embed a click steam graph
(weighted) to represent a node. [3][5]. The em-
bedding output features a graph walk and if two
nodes has similar graph walk, it means they are
more likely belong to the same click-stream.

2.2.2 Page Entities and Wikipedia2Vec

In additional, we also introduce a representation
of the page content itself, along with another
framework: Wikipedia2Vec to get a appropriate
embedding results for the page content. It is a
framework for embedding wikipage words and
entities. We use the the pretrained model [10]
which has majority of the pageview in our data.

2.3 Data Preprocessing

2.3.1 Training and Validation Set

The time series data are split into training and
validation set by 1,037 and 60. That means we
use 1,037 days to predict next 60 days’ page view.
The following data processing and embedding
methods are applied to both training and vali-
dation dataset. Here in the graph shows some
sample time series for training and validation set,
respectively.

Figure 1: Training and Validation Time Series

2.3.2 Data Selection

We collect wiki pages which have rich click
through activities and use it as the list to pull
the page view time series data. At the same time,

we also use a random selection of pages in to a
different training data. Our assumptions are

• If multiple pages are trained together,
we would result in better model perfor-
mance than individual time series

• If multiple pages are highly correlated,
defined as there are high degree of click
through connectivity, the model would
result in a even better result.

The click-stream data can be represented as graph,
so we firstly encode the click-stream data into a
graph and analyze the click-stream data with mul-
tiple graph algorithms to find the most highly
connected nodes. We use methods where to sum
of the in-degree and out-degree to find the top 100
nodes, and find all related pages that are directly
linked to these nodes within two degree. Then
excluding pages that has missing values in the
time series, unavailable embedding data, as well
as some nodes with too few clicks (doing this to
reduce the number of data due to the limitation of
the computation power without hurting the over-
all graph structure), totally we get 30,545 page
nodes.

Then, we use these 30,545 pages to get the time
series data over 3-year span to get their daily view
count, which is going to our main data to be feed
in to the models.

2.3.3 Time Series Transformation

In order to fit into the framework of sequential
model, we choose window size = 7, 35 as a choice
to reformat the data in to multiple batches of data.
That is, each batch of input data has 7/35 days’
data, used to predict the next one day’s page view.

Figure 2: Time series transformation to windowed dataset

2.3.4 Embedding and Data Concatenation

To improve the model performance, we explore
introducing varieties of embedding methods in

2

the Deep Learning models, in additional the time
series dataset. We concatenate embedding array
to the number of windowed function for Fully-
Connect Model. For LSTM, as we cannot simply
feed data by concatenate windowed view (x in
Figure 1) with embedding array, we broadcast
the embedding array to each step of windowed
functions.

Below diagram shows how to concatenate embed-
ding data:

Figure 3: Embedding Dataset

Here our final processed dataset has following
dimensions:

• window_size. Number of days for win-
dow sliding data. Hyper parameter to
tune: 7, 35.

• embedding_features.
• timesteps. Number of windowed

time series, which numerically
equals to #_days_time_series -
window_size = 1,097 in this project.

• pages. Number of wikipages.

In the model, there are a few types of embedding
methods we explore:

• Integer. It is a arbitrarily set embedding
vector with dimension of 1, where each
page has an unique integer.

• Learned. A trainable embedding layer
maps the index integer to a low dimen-
sion floating point vector.

• Node2Vec. Embed each node in the
click-stream graph into a vector with di-
mension of 32.

• Wikipedia2Vec. Embed wikipage con-
tent to a vector with dimension of 100.

Detailed comparison of the model performance
is shown in section 4.

3 Methods

We setup the baseline using two native forecast-
ing methods that do not require learning: Per-

sistence and moving average. The persistence
model is simple a lag(1) function, namely use
the last value as the prediction. The moving av-
erage model is to use the mean of values of the
window as the forecast. In this experiments, we
choose the window size 7, which exploits the
weekly seasonality of the time-series. Note that
the native methods make the prediction individu-
ally; Therefore, they do not use any embedding
features.

Next, we implement a fully connected neural net-
work in the Keras sequential model with two dif-
ferent window size, 7 (FC-7) and 35 (FC-35), as
hyper-parameter. For all layers, we use Rectified
Linear Unit (ReLU) as the activation function.
Specifically, we have the following layers.

• Dense(200, activation="relu")

• Dense(100, activation="relu")

• Dense(100, activation="relu")

• Dense(10, activation="relu")

• Dense(1, activation="relu")

Note that in the Learned Embedding experiment,
we need to add an Embedding layer before the
first fully connected layer to convert the integer
embedding to a vector embedding.

Last but not least, we explore the recurrent neural
network architecture. In particular, we design a
deep Long short-term memory (LSTM) model
with Batch normalization and dropout.

• BatchNormalization()

• LSTM(20, return_sequences=True, dropout=0.2)

• BatchNormalization()

• LSTM(20, return_sequences=True, dropout=0.25)

• BatchNormalization()

• LSTM(10, return_sequences=True, dropout=0.2)

• Flatten()

• Dense(256, activation="relu")

• Dense(64)

• Dense(10)

For all trainable models (FCs and LSTM), we
use Huber loss to fit the data. The Huber loss
combines squared loss and absolute loss. It is a
quadratic function for small value less than the
threshold δ and linear for large value bigger than
δ. We choose it for its insensitive to outliers in
data.

Lδ(a) =

{
1
2a

2 for |a| ≤ δ,
δ(|a| − 1

2δ), otherwise.
(1)

3

No Integer Learned Wikipedia2Vec Node2Vec

Persistence 371

Moving Average-7 497

FC-7 Train 303 316.7 301.1 306.3 296.9
Valid 299.2 (baseline) 309 (-3.28%) 298.4 (0.27%) 300.8 (-0.53%) 295.6 (1.20%)

FC-35 Train 281.4 286.3 280.6 285.5 279.4
Valid 266.3 (baseline) 269.8 (-1.31%) 266.4 (-0.04%) 268.7 (-0.90%) 265.5 (0.30%)

LSTM Train 371.6
Valid 487

Table 1: The results for the experiments with different models and embedding methods

We use the Mean Absolute Error (MAE) as the
key metric to compare the performance of differ-
ent models. MAE has the form

MAE =

[
1

nT

n∑
i=1

T∑
t=1

∣∣∣∣∣Y (i)
t − Ŷ (i)

t

Y
(i)
t

∣∣∣∣∣
]

(2)

, where Y (i)
t is the observed data of page i in win-

dow t, Ŷ (i)
t is the counterpart of our predication.

We choose the MAE over the mean square error
for the same concerns of outliers.

We use early stopping against the validation set as
the regularization method for FC models to avoid
over-fitting. we also used additional dropout in
the LSTM layers to further regularize the large
recurrent models. We use the popular Adam opti-
mizer for its fast training speed and adapt learning
rate.

On the hardware side, we use the Colab Pro+
product from Google for compute along with the
Google Cloud Storage for storing data, model,
and logs. We are allocated a single Nvidia Tesla
P100 GPU coming in an dual core Intel Xeon
Haswell virtual machine with 120 GB of mem-
ory. On the software side, we implement all the
models using Keras APIs in Tensorflow 2.7.0 in
Python.

4 Results and Discussion

4.1 Result

Table 1 shows performance of the models we have
tried. Our baseline are two non-learning native
models: persistence and 7-day moving average.
As a result, the fully Connect Models far outper-
forms both of the baselines and the LSTM model
barely outperforms one of the easier baseline.

For a given fully connect models, we also com-
pared different embedding methods with no em-
bedding information as the baseline. In this
case, the results is a little bit mixed with only

Node2Vec consistently outperforms the baseline
and all other mode performs either worse or on
par with the baseline.

Initially, we were surprised by the good perfor-
mance from the no embedding model, but then we
quickly realized that the way we use 1D convolu-
tion on a 3D tensor is already providing a form of
potential embedding. To confirm this hypothesis,
we retrained the models with random shuffling
the page dimension of the validation set. After
the random shuffling, all models fail to converge.

Therefore, it is expected that the random inte-
ger embedding consistent performs worse that
the baseline, given it only adding noise into the
model. For the trained embedding layer, it does
not add new features into the model, which make
its performance on par with the baseline.

As for the two most complicated embedding,
Node2Vec consistently outperform the baseline,
which confirms our hypothesis. On the other
hand, Wikipedia2Vec consistently underperforms
the baseline. Wikipedia2Vec is mostly based on
the contexts of neighboring words, which likely
does not provide additional information to this
forecasting issue.

4.1.1 Node2Vec Embedding discussion

To further buildup the intuition, we use two meth-
ods to visualize the Node2Vec Embedding results.
First, we use the Tensorboard to project the high
dimension embedding into low dimensions. Fig-
ure 4 shows the 2D projection of 200 points that
are most closest to the page "Joe Biden" defined
by the cosine distance using the principal com-
ponent analysis (PCA). As one can see, all the
terms are conceptually related to the family of Joe
Biden or the president or the presidential election.

4

Figure 4: Wikipedia2Vec PCA Projection

The second approach we build the intuition is
that we 1) pick three category and their closest
neighbors in the Node2Vec Embedding space, 2)
calculate their pairwise correlation, 3) use an un-
supervised hierarchical clustering algorithm to
sort the list 4) visualize the time series in a heat
map.

Figure 5: Time series correlation and clustering

As one can see from this graph, the time series of
closer pages in the embedding layers in general
have higher correlation.

5 Future work

Given more time and computational resources,
we would like to first fine tune the LSTM model
to achieve better performance and study the ef-
fects of embedding on them. Next, we would like
to compare our method with the state of art com-
mercial service such as the DeepAR+ algorithm
[7] from Amazon and Prophet [13] from Meta.
Furthermore, we would also like to leverage a
transformer architecture on this problem.

6 Related Works

Many previous works have tackled this multivari-
ate time series forecasting problem, primarily mo-
tivated by the Kaggle competition in 2016. [4]
[8] [12] [14] have used the Wikipedia web traffics
to predict Wikipedia web traffics using various
machine learning and deep learning technique,
including linear regression, generalized linear
model, NN, RNN, LSTM and ensemble tech-
niques. We draw heavy inspiration from those
previous work in designing the neutral network
architecture used in this paper.

Two previous projects [9] [6] from CS229 and
CS230 also tried. The first one using conven-
tional machine learning with generalized linear
model and shadow NN with simple embedding
of the pages for prediction. The other project
reformulate the forecasting problem as a cache re-
placement policy and developed LSTM network
architectures with custom loss function to mini-
mize false positives.

We also have found one previous work [11] cre-
ate graph embedding using the Wikipedia Click-
stream data to formulate a prerequisite graph.

References
[1] Pageview complete dumps. Available

at https://dumps.wikimedia.org/
other/pageview_complete/readme.
html.

[2] Research:wikipedia clickstream. Avail-
able at https://meta.wikimedia.
org/wiki/Research:Wikipedia_
clickstream.

[3] Scalable feature learning for networks.
Node2Vec by Standford SNAP.

[4] Roberto Casado-Vara, Angel Martin del
Rey, Daniel Pérez-Palau, Luis de-la Fuente-
Valentín, and Juan M. Corchado. Web traf-
fic time series forecasting using lstm neu-
ral networks with distributed asynchronous
training. Mathematics, 9(4), 2021.

[5] Elior Cohen. node2vec: Embeddings for
graph data, Apr 2018.

[6] Shuyang Du, Manish Pandey, and Cuiqun
Xing. Modeling approaches for time series
forecasting and anomaly detection. 2017.

[7] Valentin Flunkert, David Salinas, and Jan
Gasthaus. Deepar: Probabilistic forecast-
ing with autoregressive recurrent networks.
CoRR, abs/1704.04110, 2017.

5

https://dumps.wikimedia.org/other/pageview_complete/readme.html
https://dumps.wikimedia.org/other/pageview_complete/readme.html
https://dumps.wikimedia.org/other/pageview_complete/readme.html
https://meta.wikimedia.org/wiki/Research:Wikipedia_clickstream
https://meta.wikimedia.org/wiki/Research:Wikipedia_clickstream
https://meta.wikimedia.org/wiki/Research:Wikipedia_clickstream

[8] Naveena Mettu and T. Sasikala. Prediction
Analysis on Web Traffic Data Using Time Se-
ries Modeling, RNN and Ensembling Tech-
niques, pages 611–618. 01 2019.

[9] Anthony Miyaguchi, Shaon Chakrabarti,
and Nicolai Garcia. Forecasting wikipedia
page views with graph embeddings. 2019.

[10] S. Ousia. Pretrained embeddings -
wikipedia2vec., 2021. Available at:
https://wikipedia2vec.github.io/
wikipedia2vec/pretrained/.

[11] Mohsen Sayyadiharikandeh, Jonathan Gor-
don, Jose-Luis Ambite, and Kristina Ler-
man. Finding prerequisite relations using
the wikipedia clickstream. In Companion
Proceedings of The 2019 World Wide Web
Conference, WWW ’19, page 1240–1247,
New York, NY, USA, 2019. Association for
Computing Machinery.

[12] Philipp Singer, Denis Helic, Andreas Hotho,
and Markus Strohmaier. Hyptrails: A
bayesian approach for comparing hypothe-
ses about human trails on the web. In Pro-
ceedings of the 24th International Confer-
ence on World Wide Web, WWW ’15, page
1003–1013, Republic and Canton of Geneva,
CHE, 2015. International World Wide Web
Conferences Steering Committee.

[13] Sean J. Taylor and Benjamin Letham. Fore-
casting at scale. The American Statistician,
72(1):37–45, 2018.

[14] Yujia Yang, Shi Lu, Huan Zhao, and Xiao-
qian Ju. Predicting monthly pageview of
wikipedia pages by neighbor pages. In Pro-
ceedings of the 2020 3rd International Con-
ference on Big Data Technologies, ICBDT
2020, page 112–115, New York, NY, USA,
2020. Association for Computing Machin-
ery.

6

https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
https://wikipedia2vec.github.io/wikipedia2vec/pretrained/

	Problem Statement
	Dataset and Features
	Time Series Data Source
	Page Feature Data Source
	Click-Stream and Node2Vec
	Page Entities and Wikipedia2Vec

	Data Preprocessing
	Training and Validation Set
	Data Selection
	Time Series Transformation
	Embedding and Data Concatenation

	Methods
	Results and Discussion
	Result
	Node2Vec Embedding discussion

	Future work
	Related Works

