Classifying YouTube Videos by Thumbnail

Ye Chen Yan Wang
Department of Computer Science Department of Computer Science
Stanford University Stanford University
yechen90@stanford.edu yanl2@stanford.edu
Robert Tan

Department of Computer Science
Stanford University
rtan21@stanford.edu

Abstract

YouTube videos can be classified into different categories. Thumbnails, as one of
the first things that users look at, often decide what category the video belongs to
and whether the user would click on that video. To provide automatic classification
based on the thumbnails, we trained 4 different Convolutional Neural Networks
(VGG16, Inception, and compared their performance. We classified the thumbnail
images into 4 categories. We utilized transfer learning to learn the high level
features of the images and added extra layers to achieve the specific classification
task. The results demonstrate that Xception’s performance is the best among the
four CNN archetictures.

1 Introduction

YouTube videos are often classified and tagged with certain video categories in order to be used in
YouTube’s recommender systems and listed when a user searches videos related to a certain category.
The goal of this project is to train different deep learning architectures and compare their performance
on classifying the category of the YouTube video based only on its thumbnail. This project can largely
help reduce users’ cognitive load by auto-classifying the YouTube video. Besides, it can also serve as
an input or supplement to other classifiers that classify videos based on other features. Thumbnails
are usually the first thing that come to users’ eyes, and they are usually very related to the content of
the video so that users would click on that video. For example, if the thumbnail is a screenshot of a
game, then the video is very likely about games; if the thumbnail contains a sandwich or steak, then
it is likely about Food and Drinks. Therefore, a classification algorithm based on thumbnails can help
understand the content to a great extent. The input to the algorithm is an image. We then use neural
networks to output a predicted category for the image. We will investigate and compare 4 different
CNN architectures in this project.

2 Related work

Computer vision and CNNs are applied in various different image and video classification problems.
As one of the world’s largest video sharing platform, YouTube has become an important source for
image and video data. In 2016, Abu-El-Haija et al. introduced YouTube-8M, the largest YouTube
video multi-label classification dataset [1]. YouTube-8M is a large-scale labeled video dataset that

CS230: Deep Learning, Fall 2021, Stanford University, CA.

https://research.google.com/youtube8m/index.html

consists of millions of YouTube video IDs, with high-quality machine-generated annotations from a
diverse vocabulary of 3,800+ visual entities [1]. Automatic categorization for YouTube videos has
been a challenging task due to noisy and missing labels. In 2010, Wang et al. introduced YouTubeCat
to classify different YouTube videos [2]. However, the YouTubeCat algorithm requires a lot of extra
information that is not easily available to the users. Considering the thumbnail is usually the first thing
that the user would look at, we will simply use YouTube thumbnails to classify different YouTube
videos.

The state-of-the-art technique for our task is Convolutional Neural Networks. In recent years, many
different Convolutional Neural Networks (CNNS) bring a huge breakthrough in image classification.
For example, in 2014, Simonayn et al. introduced a deep neural networks architecture for large-scale
image recognition (VGG16) [3]. Very deep neural network started to become the mainstream solutions
for many computer vision related problems. In 2016, Szegedy et al. introduced a new method to
build very deep neural networks (Inception) [4]; instead of stacking many convolutional layers, they
stacked modules or blocks of convolutional layers to efficiently scale up networks. However, as the
networks got deeper, they became more difficult to train. To solve this problem, in the same year,
He et al. presented a residual learning framework (ResNet-50) to ease the difficulty of training deep
neural networks, which are easier to optimize and can gain accuracy from considerably increased
depth [5]. In 2017, based on the successful Inception networks, Chollet introduced a depthwise
Separable Convolutions called Xception [6]. Xie et al. introduced a homogeneous, multi-branch
architecture (ResNeXt-50) that has only a few hyper-parameters to set [7]. There are many other
advanced and complicated CNN architectures. As more computing power becomes available, more
complicated models generally produce better results. Therefore, in our project, we expect Xception,
the most complicated model we will try, to generate the best result.

3 Dataset and Features

The dataset we use is a subset of the YouTube-8M dataset described above. The original dataset
is huge and contains a lot of data and information that are not useful for our project. There are 25
categories in total: Arts & Entertainment; Autos & Vehicles; Beauty & Fitness; Books & Literature;
Business & Industrial; Computers & Electronics; Finance; Food & Drink; Games; Health; Hobbies &
Leisure; Home & Garden; Internet & Telecom; Jobs & Education; Law & Government; News; People
& Society; Pets & Animals; Real Estate; Reference; Science; Shopping; Sports; Travel; Unknown [1].
Each category can be divided into some subcategories, so there are 3862 subcategories [1].

Figure 1: A thumbnail with category Arts & Entertainment

The first step is to preprocess the dataset to generate labeled thumbnails. Most thumbnails are
360x240 and we will not resize the images until feeding into the model. Figure 1 is an example
thumbnail in the Arts & Entertainment category. In order to do this, for each YouTube ID in the
dataset, we obtained its thumbnail by querying YouTube’s API. Then, given the mapping from
subcategories to main categories, we converted every ID’s labels to a set of main categories. We pick
the most frequent category as its final label for the thumbnail. If there are multiple labels with the
same frequency, we simply pick a random one. Although we are able to obtain the labeled thumbnails,
it is hard to do all the data preprocessing work while training and testing our models. To save space
and get it easier for training, we serialized the images and labels into bytes and uploaded the tfrecord
to AWS S3 for later use.

12000

10000

8000

6000

Probability

4000

2000

0 5 10 15 20 25
Data

Figure 2: Histogram of 25 categories

We collected over 300,000 labeled training examples and the size of the dataset is around 150 GB.
However, due to limited GPUs and computing power, we were only able to train, validate and test on
4,800 examples from our collected dataset. In addition, because the size dataset is greatly reduced,
we also reduce our initial 25 categories to only 4 categories. From Figure 1, we can see the columns
11, 12 and 17 are the most frequent labels in our dataset, which represent Arts & Entertainment,
Games, and Autos & Vehicles. We add a fourth category to represent all the other original categories.

4 Methods

We experiment on four different Convolutional Neural Networks (CNNs) in our project: VGG16,
Inception, ResNet-50, and Xception. Due to limited size of the dataset, we apply Transfer Learning
to first extract features from the pretrained layers and add final layers to do the classification task. All
the pretrained model are trained on the ImageNet dataset [8] and provided by TensorFlow [9]. At the
end of the pretrained model, we first add a flatten layer to reshape the tensors. Then we use a Dense
layer with 1024 neurons and ReL U as its activation function. Then we use Dropout layer to reduce
overfitting. The final layer is a Softmax layer with 4 categories. In the following subsections, we we
introduce the pretrained models in detail.

41 VGGI16

The input to the model is of fixed size 224 x 224 x 3 image. The image is passed through a stack of
convolutional layers with 3 x 3 filters. The convolution stride is fixed to 1 pixel; the spatial padding
of convolutional layer input is such that the spatial resolution is preserved after convolution, i.e. the
padding is 1-pixel for 3x3 convolutional layers. Spatial pooling is carried out by five max-pooling
layers, which follow some of the convolutional layers. Max-pooling is performed over a 2x2 pixel
window, with stride 2. Three Fully-Connected (FC) layers follow the 5 convolutional blocks: the first
two have 4096 channels each, the third performs 1000-way ILSVRC classification and thus contains
1000 channels (one for each class). The final layer is the soft-max layer. Since we have 25 different
classes in our dataset, the final Dense layer contains 25 channels as well [3].

4.2 Inception

There exists multiple versions of Inception model [4]. We use Inception_v3 for this project. It
uses Factorized Convolutions to reduce the computational efficiency as it reduces the number of
parameters involved in a network. It also keeps a check on the network efficiency. By replacing
bigger convolutions with smaller convolutions, it leads to faster training as well. The thir important
point is asymmetric convolutions. A 3 x 3 convolution could be replaced by a 1 x 3 convolution
followed by a 3 x 1 convolution. If a 3 x 3 convolution is replaced by a 2 x 2 convolution, the
number of parameters would be slightly higher than the asymmetric convolution proposed. It also
uses auxiliary classifiers for regularization and pooling operations for grid size reduction.

4.3 ResNet-50

Similar to Inception_v3, ResNet-50 is a newer version based on the original ResNet paper [5].The
architecture of ResNet50 has 4 stages. The network can take the input image of size 224 x 224 x
3. It performs the initial convolution and max-pooling using 7x7 and 3x3 kernel sizes respectively.
Afterward, Stage 1 of the network starts and it has 3 Residual blocks containing 3 layers each. The
size of kernels used to perform the convolution operation in all 3 layers of the block of stage 1 are 64,
64 and 128 respectively. The convolution operation in the Residual Block is performed with stride 2,
hence, the size of input will be reduced to half in terms of height and width but the channel width
will be doubled. As we progress from one stage to another, the channel width is doubled and the size
of the input is reduced to half. Finally, the network has an Average Pooling layer followed by a fully
connected layer having 1000 neurons (ImageNet class output).

4.4 Xception

Xception is an extension of the inception Architecture which replaces the standard Inception modules
with depthwise Separable Convolutions [6]. Cross-channel (or cross-feature map) correlations are
captured by 1x1 convolutions. Spatial correlations within each channel are captured via the regular
3%3 or 5x5 convolutions. The model has 71 layers in total.

5 Experiments and Results

The first step is to resize the image from 360 x 240 x 3 to 224 x 224 x 3 so that we can directly feed
the images into the model (150 x 150 x 3 for Inception). Then we normalized the pixels of the images
by dividing each pixel by 255. This step makes training easier and faster. Since we have 4 classes,
we applied one-hot encoding on the labels to make each label of size (4, 1). After these two steps, the
shape of our training images is (3200, 224, 224, 3) and the the shape of our training labels is (3200,
4). The shape of our validation images is (800, 224, 224, 3) and the the shape of our validation labels
is (800, 4).

Because our task is multi-class classification, we chose categorical_cross_entropy as the loss function.
We tried multiple batch size and the results are very similar, so we just keep 32 as the batch size for
all four models. For optimizer, we tried RMSProp, SGD, and Adam, each with learning rate from
0.01 to 0.00001. The results showed that Adam or RMSProp with learning rate 0.001 to 0.00001
generates the similar results for all four models. When learning rate = 0.01, the training accuracy
doesn’t improve at all over time. For simplicity, we chose Adam with learning = 0.00001 as our final
optimizer.

Model Training Acc | Validation Acc | Test Acc | Precision | Recall | F1 score
VGGI16 81.38% 60.12% 59.38% | 0.5707 0.6175 | 0.5729
Inception | 100.00% 60.00% 59.87% | 0.5752 0.6083 | 0.5837
ResNet50 | 49.78% 47.50% 47.12% | 0.4657 0.4941 | 0.4546
Xception | 100.00% 67.87% 65.13% | 0.6297 0.6675 | 0.6391

Table 1: Results

CAMSolutions FilnlesCAM

Figure 3: Misclassified example

From Table 1, we observe that training accuracy is generally a lot higher than the validation accuracy
across all 4 models. The Test accuracy on 800 examples is very close to the validation accuracy.
From the metrics above, we can easily conclude that Xception’s performance is the best among the
four CNN models. Since the dataset is small, models are prone to overfitting, so the results are within
our expectation. In Figure 3, we present the confusion matrices of the test set. All the four models
classify the first three categories relatively well, but did poor job in classifying the "Others" category,
which makes sense because the "Others" category contains a variety of different categories, so the
images don’t share as much common features as in the same category. We expect the accuracy to
increase if we can train on larger datasets. Figure 4 shows a misclassified example. It belongs to the
"Arts & Entertainment” category while it is predicted to be "Games" category. This example is hard
to classify because through human eyes, we can think of it to be either "Arts" or "Games". Both make
sense.

VGG16 Confusion Matrix Inception Confusion Matrix

Arts 01207 00655 01138 01069 00621 01759

150
Gomes | 01474 06895 00737 00895 Games| 01421 00895 01105 125
125
@ T
3 £ 100
¥ 100 g
= &
Vehicies 00698 00814 00930 Vehicles 00349 01512 01512 13
s
50
50
aner | 02564 01667 02521 03248 . Other| 01709 02137 01581 »
5 o o o 5
&© & & & & & o ¢
& & & & & &
ResNet50 Confusion Matrix Xception Confusion Matrix
140 20
Ais 01655 01793 01414 e Tt e o
175
120
150
01526 01895 00947 100
Games Games| 01632 06474 00737 01158
- 15
F] z
: . :
v 100
e H
\ehicles 01047 a1e3 RIS & Vehicles 00233 00930 01047 »
@ 50
omer | 02308 01923 02821 02949 oner| 01708 o S
3
2
5
& & & & & & & &
& < <& & &
f & &

Figure 4: Confusion matrices of 4 models

6 Conclusion and Future Work

The results demonstrate that Xception works best for classifying YouTube videos based on thumbnails,
which aligns with our expectation. We were only able to train on a small subset of data we have
collected and divide the images into 4 major categories. There are a few things that we can try in
the future to extend and improve our models. First, we can extend the model to classify the full 25
categories of images. If trained on 25 categories, then the number of misclassified "Others" category
is supposed to be greatly reduced. Second, although we have collected around 300,000 examples,
due to limited computing resources (AWS didn’t approve our GPUs request), we were only able to
train on 4,000 examples. When we get access to more computing power, we will train on a larger
dataset and expect a better accuracy. Third, each YouTube videos is tagged with multiple categories
and we selected the most frequent category. In the future, we can try the multi-label classification,
which will make the model more useful and reasonalbe in practice.

7 Contributions

All three members of the team contributed to each aspect of the project, but each focused more on
different areas. Ye and Robert focused on collecting the YouTube thumbnail datasets and recording
final video presentation. Yan focused on training and testing CNN models and performing result and
error analysis. All team members contributed to the literature review, proposal, milestone, and final
reports.

8 Code Link

[https://github.com/robert-tan/yt-thumbnail-classifier|

References

[1] Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B., & Vijayanarasimhan, S.
(2016). Youtube-8m: A large-scale video classification benchmark. arXiv preprint arXiv:1609.08675.

[2] Wang, Z., Zhao, M., Song, Y., Kumar, S., & Li, B. (2010, June). Youtubecat: Learning to categorize wild
web videos. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp.
879-886). IEEE.

[3] Simonyan, K., Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.

[4] Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture
for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.
2818-2826).

[5] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

[6] Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 1251-1258).

[7] Xie, S., Girshick, R., Dollar, P, Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1492-1500).

[8] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255).

[9] Abadi, Martin, Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... others. (2016). Tensorflow: A system
for large-scale machine learning. In 12th Symposium on Operating Systems Design and Implementation (pp.
265-283).

	Introduction
	Related work
	Dataset and Features
	Methods
	VGG16
	Inception
	ResNet-50
	Xception

	Experiments and Results
	Conclusion and Future Work
	Contributions
	Code Link

