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1. Introduction 7 

Simulation is an important approach for scientific discovery aside from experimental and 8 

theoretical methods. In the molecular simulation community, researchers have been facing the 9 

efficiency-vs-accuracy dilemma for decades.[1] Classical method such as molecular dynamics 10 

(MD) simulation is driven by empirical interatomic potentials. The atom motions are governed by 11 

Newton’s law which is very fast to compute. The MD method can calculate systems with millions 12 

of atoms but lacks the accuracy to replicate real-world properties. On the other hand, the density 13 

functional theory (DFT) describes atomic systems much accurately by solving the Schrödinger 14 

equation but is very expensive to compute. Thus the DFT calculations are restricted to a few 15 

hundred atoms. 16 

This work aims to train a deep neural network model to describe molecular systems with DFT 17 

accuracy and MD efficiency. We will exemplify this idea using the popular two-dimensional 18 

material graphene in this work.[2] A third-party package DeePMD-kit (DP), is used.[1] DeePMD-19 

kit is a deep learning package for many-body potential energy representation and MD simulation. 20 

As shown in Fig. 1, ab initio molecular dynamics (AIMD) simulation is performed to generate 21 

training data with DFT accuracy. The feature extraction and model training is then performed 22 

using DeePMD-kit. The classical MD simulation is carried out on the Large-scale 23 

Atomic/Molecular Massively Parallel Simulator (LAMMPS).[3] 24 

 25 

Figure 1. Schematic of the AIMD-DNN-MD workflow 26 

2. Related Work 27 

Classical MD AIMD Feature Extraction 
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Several frameworks have been developed in recent years to help train neural network models 28 

to describe molecular systems. To name a few, DeePMD-kit (DP),[1] Neuroevolutionary Potential 29 

(NEP),[4] Gaussian Approximation Potentials(GAP),[5] Moment Tensor Potential(MTP),[6] and 30 

QUantum mechanics and Interatomic Potentials(QUIP)[7]. In this work, the DP framework is 31 

selected given to its growing user community and open-source codebase. In addition, the DP code 32 

is GPU optimized, which makes it significantly faster in model training and inference.  33 

3. Dataset and Features 34 

To generate the AIMD training dataset, a graphene system with 98-atoms is created, as shown 35 

in Fig. 2(a). The Vienna Ab initio Simulation Package (VASP)[8] is used to perform the AIMD 36 

simulation. For simulation setup, the time step is 0.5 fs (1 fs = 10−15 s), and the temperature is 300 37 

K. The canonical ensemble (NVT) is used where the system temperature is controlled by a thermal 38 

bath. The projector augmented wave pseudopotentials are employed to describe the interactions 39 

between the valence electrons and frozen cores. The generalized gradient approximation 40 

exchange−correlation functional of Perdew−Burke−Ernzerhof. Only the Γ-point was used for k-41 

space sampling. A total of 1000 steps and 0.5 ps (1 ps = 10−12 s) simulation is performed to extract 42 

the atomic trajectory, force and energy. The atomic trajectories are used as feature values and the 43 

force and energy are the target values. 44 

 45 

Figure 2. (a) A graphene system with 98 atoms is used. (b) A snippet of the training data. 46 

The generated data from the AIMD simulation need to be pre-processed by the DP plugin 47 

dpdata[1] before feeding into the deep neural network. The following information is needed for 48 

the model training: atom type, box boundary, coordinate, force and system energy. A snapshot, or 49 

a frame of the system, contains all these data points for all atoms at one time step. In total 1000 50 

snapshot is taken from the AIMD simulation. For each snapshot, information such as atom 51 

trajectory, nearest neighbor list and system energy is provided for the training. A snippet of the 52 

training data is shown in Fig. 2(b). 53 

(a) (b) 
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4. Methods 54 

The DP framework has three major components. The first part is a library that computes the 55 

feature vectors, forces and viral. The second part is a TensorFlow API which handles the model 56 

training and testing. The last part is an API to classical MD programs such as LAMMPS. The deep 57 

neural network is implemented using standard tensor operations. The force and viral terms can be 58 

calculated based on the system energy with respect to atomic positions and box tensors.[1] Adam 59 

optimization is used in training. Root mean square error (RMSE) is selected as the loss function. 60 

The training, validation and test dataset have proportions of 60%, 20% and 20%, respectively. As 61 

suggested by the DP document, a three-layer neural network with 25, 50 and 100 neurons in each 62 

layer is used. The start and end learning rate and decay rate are 1×10−3, 3.5×10−8 and 5000, 63 

respectively. The training dataset is composed of three data systems, while the validation data set 64 

is composed of one data system. The number of atoms, batch size, the number of batches in the 65 

system, and the probability of using the system are all shown on the screen as shown below. The 66 

last column presents if the periodic boundary condition is assumed for the system. 67 

 68 

Once the model is trained, the neural network parameters are frozen and the model is 69 

compressed. The compression step brings negligible loss to the inference accuracy but greatly 70 

speedup the inference performance in MD simulation. The speedup can be more than 10 times on 71 

both CPU and GPU devices. In addition, model compression can significantly reduce memory 72 

consumption, which can be 20 times less memory usage on the same hardware. 73 

5. Experiments/Results/Discussion 74 

The model is trained for 1,000,000 steps and the training results are shown in Fig. 3(a). From 75 

top to bottom, Fig. 3(a) displays the RMSE for the overall error, decomposed error for energy, 76 

decomposed error for force and the learning rate decay schedule, respectively. It can be observed 77 

that the RMSEs decrease monotonically during training for both training and validation datasets. 78 
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The trained model is tested on the reserved test dataset and the predicted force and energy values 79 

are shown in Fig. 3(b). The x-axes are ground truth generated from AIMD simulation and the y-80 

axes are the predicted values. The inference results are distributed in the diagonal direction, which 81 

indicates high prediction performance.  82 

 83 

Figure 3. (a) Training loss with steps. (b) Model inference on system force and energy. 84 

Next, the trained DP model is deployed in LAMMPS to drive the classical MD simulation 85 

using LAMMPS. First, the trained model is used to test the structural stability of the system. The 86 

relaxed graphene structures using the DP model are shown in Fig. 4. The displayed graphene 87 

structure is not entirely flat, which is expected due to the ripples in the cross-plane z-direction. 88 

Next, the DP model is used to test the thermal stability of the system. The system temperature 89 

under NVT and NVE ensembles is shown in Fig. 5(a). After 10 ps NVT calculation, the system is 90 

fully relaxed under NVE condition for another 10 ps without temperature or energy controls. It 91 

can be observed that the system temperature is very stable under NVE, which indicates good 92 

thermal stability. Lastly, the radial distribution functions (RDF) are calculated to check the carbon 93 

atom distances described by DFT, DP and Tersoff empirical potential[9] respectively as shown in 94 

Fig. 5(b). The DP model can accurately replicate the RDF profile of those generated from the DFT 95 

calculation.  96 

(a) (b) 
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 97 

Figure 4. Atomic configuration of the graphene system after relaxation with deep potential. 98 

 99 

Figure 5. (a) System temperature under NVT and NVE ensembles. (b) Radial distribution 100 

function calculated by AIMD, DP and Tersoff potential, respectively. 101 

6. Conclusion/Future work 102 

In this work, a neural network based atomic potential is developed to describe the 2D graphene 103 

system with DFT accuracy and classical MD efficiency. The trained model can accurately predict 104 

the force and energy of the graphene system at a given temperature. Thermal stability and radial 105 

distribution function are calculated to verify the validity of the generated model. In the future, 106 

more training data can be generated using AIMD to train a more comprehensive model that can 107 

drive the MD simulation under different conditions such as temperature, strain, and surface defects. 108 
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