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Abstract

Training deep neural network is costly due to high computation cost and lack of
large dataset. To mitigate this issue, numerous learning methods, such as transfer
learning and meta-learning, were found in academia. This project compares these
recently discovered learning methods on classification task of NIH Chest X-rays
dataset. According to experiments performed within this project, utilizing transfer
learning and advanced meta-learning, such as non-parametric MAML, on small
dataset may increase performance, but it is difficult to alleviate the decrease in
performance caused by decrease in dataset size and to produce performance that is
on par with the large dataset.

1 Introduction

Most of recent industrial problems in applying deep learning comes from data. With advent of neural
network, potential benefits of machine learning have been proven both in industry and academia,
but many companies still struggle to apply this new technology due to data problem. Not only the
companies do not possess enough data that pertains to specific tasks they desire to solve, but also
there are high financial and time costs involved in collecting and training with large dataset.

As a result, recent trends in deep learning have been learning methods that demonstrates high
performance with a small dataset. Especially, transfer learning and meta-learning have shown
competent performance with a small dataset of under 10,000 items in numerous tasks.

For this project, we analyze performances of different learning methods, ranging from traditional
convolutional networks to meta-learning, in classifying diseases in chest X-ray images. By analyzing
models’ performance, we explore their potential implications in solving tasks with small dataset.

2 Related Work

2.1 Transfer Learning for COVID-19 Detection

Basu et al. (1) invents Domain Extension Transfer Learning (DETL) which leverages a model
pre-trained on NIH Chest X-rays (2) to classify COVID-19 on chest X-rays. DETL pre-processes
NIH Chest X-rays dataset by relabeling X-rays to two classes, normal and disease, and pre-trains
models pre-trained on different architectures, including AlexNet, VGGNet, and ResNet. Then, it
constructs a second dataset with four classes, normal, other disease, pneumonia, and Covid-19,
from multiple datasets, including NIH Chest X-rays dataset,and compares the pre-trained models’
performance. The models achieve 82.98%, 90.13%, and 85.98% accuracy with AlexNet, VGGNet,
and ResNet respectively, and such performance is promising given that NIH Chest X-rays dataset has
labeling accuracy of >90%.

Nevertheless, there are two shortcomings of Basu et al. (1): amalgamation of disease classes and
simplicity of evaluation metric. Among NIH Chest X-rays dataset, images with pneumonia class
account for only 1.2% of the dataset, and images with COVID-19 class account for less than 5% of the
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entire datasets. Therefore, whether DETL’s overall accuracy of 90.13% has implications for potential
practicality is unknown. Also, the evaluation metric it uses, accuracy, seems to be impractical in real
world, where classifying diseases as normal is detrimental.

2.2 Meta Learning for ORBIT

Unlike Basu et al. (1), Massiceti et al. (3) takes a different approach by utilizing meta learning on
small dataset. It compares performance of ProtoNets (5), CNAPs (6), MAML (7), and FineTuner (8)
on ORBIT (4) dataset. The paper does a good job in comparing different types of learning algorithms
(multi-task learning, optimization-based learning, and non-parametric learning) and providing clear
evaluation metrics which are measured on two different types of videos, clean videos and clutter
videos. The difference between clean videos and clutter videos is that the former contains objects
with more clear background.

However, the best performance described in the work falls short of meeting real world application
standard. For clean videos, MAML achieves only 70.58% frame accuracy, and for clutter videos,
FineTuner achieves only 53.73% frame accuracy. Also, there seems to lack clear baseline methodol-
ogy which indicates how well the model is performing compared to previous approaches utilizing
large dataset.

3 Dataset and Features

For dataset, we use NIH Chest X-rays (2). The dataset consists of 112, 121 chest X-ray images in
1024 × 1024 × 1 dimension, each of which has meta data, including disease types, age, gender,
relevant box position. As we endeavor to compare performance of each model, we formulate our
objective as a classification task and constraint usage of the dataset to only images and corresponding
disease types.

Also, for the purpose of our project, we use images with a single disease type that are labeled as
No Finding, Cardiomegaly, Pneumothorax, Consolidation, Edema, or Pneumonia. As we endeavor
to solve a classification task, not multi-class classification, we discard data with multiple disease
types. Number of X-ray images with no disease, labeled as No Finding, are down-scaled with same
proportion, because they are the majority, > 50%, of the dataset and might cause false analysis by
introducing dissimilarity in distribution compared to real world data. In addition, since the chest
X-ray images are resized to 64 × 64 dimension for faster training iterations, we select a couple
disease types that are still detectable with naked eyes of medical professionals to mitigate the issue
of information loss from lower resolution. For instance, as shown in Figure 1, the selected disease
types are generally easier to detect even in low resolution. The resulting dataset contains total 41, 029
images.

Figure 1: From left to right, X-ray images of 3 diseases that are easier to detect and 3 diseases that
are harder to detect with naked human eyes (Pneumonia, Cardiomegaly, Pneumothorax, Emphysema,
Fibrosis, Mass)

For the purpose of our project, the model is evaluated on small partial dataset. Models trained with
the full dataset act as a baseline while models trained with the partial dataset represent difficulties of
training with small dataset. The partial dataset is balanced and consists of 1200 images of selected
diseases where number of samples for each class is equal.
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Figure 2: Class distribution of pre-processed NIH Chest X-rays dataset

Figure 3: Convolutional networks architecture: ResNet50 (left) and VGG-16 (right)

4 Methods

4.1 Convolutional Networks

For baseline model, we use convolutional networks, ResNet50 (9) and VGG16 (10) (Figure 3) as
they show reasonable performances in Basu et al. (1). ResNet50 is a 50-layer residual network and
VGG16 is a 16-layer network that utilizes standard 3× 3 kernel and 2× 2 max-pooling layers. Last
layers of both networks are fully connected layers that output a 6 dimensional vector where each row
represents probability of a class.

As a loss function on the full dataset, we use weighted cross entropy loss to mitigate imbalanced
dataset problem. Weights are calculated based on the distribution of dataset and normalized.

Loss(x, y) =

N∑
n=1

C∑
c=1

wclog(
exp(xn,c)∑C
k=1 exp(xn,k)

)yn,c (1)

wc =
N

15×nc∑C
k=1 wk

(2)

where N is number of samples and C is number of classes.

On the other hand, we use cross entropy loss as a loss function for the partial dataset as the distribution
of the dataset is balanced.

Loss(x, y) =

N∑
n=1

C∑
c=1

log(
exp(xn,c)∑C
k=1 exp(xn,k)

)yn,c (3)

4.2 Transfer Learning

For transfer learning, we use ResNet50 pre-trained on ImageNet (11). The model shares same
architecture as described above, except that the model is pre-trained on images with 3× 256× 256
dimension. For purpose of our project, we customize the model such that last linear layer outputs 6
dimension vector and uses the cross entropy loss described in Eq 3.

4.3 Meta Learning

For meta learning, we use MAML (7). Our MAML model uses 4 layers of convolutional network with
Batch Normalization and ReLu activation. The last layers of the model are a fully connected network
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that outputs 6 dimensional vector representing probabilities of each class. For updating gradients, the
model utilizes optimization-based adaptation where inner loops are updated with following minimize
function:

minθ
∑
taski

L(θ − α∇θL(θ,Dtr
i ), Dtr

i ) (4)

where θ is parameter of the model, L is the cross entropy loss described in Eq 3, and D is dataset.
Then, outer loops are updated with following update function:

θ ← ∇θL(θi, Dtest
i ) (5)

In addition we implement MAML_Non_parametric, a blackbox-based, non-parametric MAML (12).
The mode uses LSTM to encode support set and a fully connected layer to encode query set, and it
optimizes following loss function,

Loss = L(ŷts,
∑

xk,yk∈Dtr

fθ(x
ts, xk)yk) (6)

where L is the cross entropy loss described in Eq 3.

4.4 Evaluation

For evaluation, we measure four metrics: overall accuracy, precision, recall, and F1 score. Precision,
recall, and F1 score are averaged over the classes. Notice that in real world scenario, missing a
disease detection is more detrimental than falsely labeling normal as disease. Thus, for our study,
recall is more significant that precision metrics.

5 Results

5.1 Experiments

For convolutional networks, ResNet50 and VGG16, the models are trained on Adam optimizer with
0.001 learning rate and batch size of 32. While VGG16 is trained only on the balanced partial dataset.
ResNet50 is trained on the full dataset, partial dataset proportional to the full dataset, and the balanced
partial dataset to compare models’ performance on different datasets.

For transfer learning, images of partial balanced dataset, which are in 1× 64× 64 dimension, are
scaled to 3× 256× 256 dimension before being fed into ResNet50 pretrained on ImageNet. Similar
to the convolutional networks, the model was trained on Adam optimizer with 0.001 learning rate
and batch size of 32.

For meta-learning algorithms, MAML is trained on the partial balanced dataset with inner learning
rate of 0.4, outer learning rate of 0.001, and batch size of 16. Out of 6 classes in the partial dataset, 4
were used for training, 5 for validation, and 6 for testing. Also, the models were experimented on
3-way 1-shot and 3-way 3-shot with 15 queries. For MAML_Non_Parametric, it is trained on the
partial balanced dataset with learning rate of 0.001, batch size of 16, 3-way 1-shot with 15 queries.

5.2 Analysis

As shown in Figure 4, models trained on imbalanced dataset, ResNet50 (Full) and ResNet50(Partial,
Proportional), achieve high accuracy while precision, recall, and F1 are relatively lower. One potential
reason could be large proportion of No Finding within the dataset; the models might be optimized for
No Finding class and demonstrate low performance in other classes as shown in Figure 5.

Also, models with deeper network tend to achieve higher performance. Compared to VGG16, which
completely fails to learn classification, ResNet50 on the same dataset achieves performance almost
equal to the performance by ResNet50 on the full dataset. Also, given the fact that MAML is trained
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Model Accuracy Precision Recall F1

ResNet50 (Full) 0.57 0.31 0.39 0.30
ResNet50 (Partial, Proportional) 0.63 0.23 0.18 0.20

ResNet50 (Partial, Balanced) 0.48 0.49 0.45 0.43
VGG16 0.16 0.02 0.17 0.05

ResNet50-TL 0.34 0.27 0.32 0.26
MAML, 3-way 1-shot 0.43 0.39 0.43 0.39
MAML, 3-way 3-shot 0.49 0.51 0.49 0.46

MAML_Non_Parametric 0.46 0.48 0.47 0.42

Figure 4: Model performance: accuracy, precision, recall, and F1 metrics

Model No Finding Cardiomeg. Pneumotho. Consolid. Edema Pneumonia

ResNet50
(Proportional) 0.68 0.00 0.21 0.00 0.00 0.00

ResNet50
(Balanced) 0.49 0.46 0.63 0.27 0.77 0.05

Figure 5: Recall metric per class for ResNet50 models trained on partial dataset

on 3-way classification, its performance is low compared to ResNet50 as it utilizes much shallow
network of 4 layers.

For transfer-learning, it performs relatively poorly compared to ResNet50 trained on the partial
balanced dataset. One reason why the transfer learning with pre-trained ResNet50 model shows low
performance is that the pre-trained model utilizes ImageNet dataset which causes model to learn and
focus on shapes and colors. However, NIH Chest X-rays dataset requires models to focus on other
details, such as size and patterns, so utilizing the pre-trained model might be unhelpful.

On the other hand, increasing number of shots and taking non-parametric approach both improve
performance in meta-learning. For instance, training on non-parametric MAML increases accuracy,
precision, recall, and f1 performance by 7%, 23%, 9%, and 8%, respectively.

6 Future Works

Given the fact that only 90% of images in NIH Chest X-rays dataset are correctly labelled, accuracy
of the experimented models seems reasonable. However, in real-world medical practices, high recall
metric is a must-have, so <50% recall indicates that there are lots of rooms for improvements.

One potential way to improve performance is to increase expressivity. As described in 5.2, when
training with small dataset, models with deeper network and/or more sophisticated approaches achieve
higher performance. Thus, we have noticed that models with shallow networks have difficulty in
fully incorporating information contained within input images. To resolve this problem, we can
experiment a couple different approaches, including but not limited to increasing image resolutions,
utilizing models pre-trained with similar input images and tasks, and implementing deeper networks
for meta-learning.

Improving performance of models on not just partial NIH Chest X-rays dataset, but also all kinds
of small dataset is critical to deployment of machine learning algorithms. As implementation cost
of deep neural networks is significantly high and will continue to remain high, alternative learning
methodologies, such as training models with small dataset, are key to advancement of machine
learning technology. As machine learning is often referenced as electricity in terms of its industrial
impact, more research and allocation of resources on easily deployable machine learning algorithms
are needed.
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7 Contributions

All works including design, implementation, training, evaluating, and writing the entire paper are
done by Ki Suk Jang.

8 Work done for CS230 & CS330

Training/testing of Resnet50, VGG16, and transfer learning are done for CS230 while training/testing
meta learning is done for CS330.
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