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1 Introduction

Rapid urbanization and climate change have made
cities more vulnerable to the occurrence of natural
disasters. Earthquakes are among the natural dis-
asters than severely impair communities, with the
occurrence of the events in Haiti 2021 and Japan
2011 being vivid examples of the ability of these
events to disrupt our lives. Motivated by minimiz-
ing the risk that earthquakes impose, researchers
have developed complex models to accurately de-
termine the impacts of these events, allowing to
quantify the effect of mitigation actions. These
earthquake models are computationally expensive,
challenging the ability of researchers to translate
their results into public policy. It is in that re-
gard that neural networks have risen to generate
surrogate models that rapidly and accurately can
estimate the impacts of earthquakes. However,
there is significant skepticism in disaster science
to use neural networks due to their lack of inter-
pretability. Considering the previous challenges,
this study aims to develop a neural network to
rapidly and accurately predict recovery time of
buildings that experience damage after an earth-
quake. Moreover, besides just calibrating a neu-
ral network, this project implements explanation
models to understand the internal mechanisms of
neural network prediction and propose mitigation
actions based on these results.

2 Task developed by the neural network

The task developed by the neural network is to pre-
dict the median recovery time for a given structure
subject to a specific set of ground motion inten-
sities. Recovery time of a building is defined by
the strength of its non structural components such
as partition walls, ceilings or elevators. The build-

ing recovery model used in this study considers
41 of these components. During the computation
of recover for a given seismic scenario, each of
these components is damaged according to their
strength, defined by a lognormal CDF function.
In terms of decision variable, structural engineers
can define the value of the median that defines
the lognormal CDF. Considering this, to repli-
cate the decision process, the neural network uses
as an input a multiplying factor α for each non-
structural component k. Following what is done
in practice, α has a range between 1 and 3. This
α factor multiplies the original median assigned
to the component k according to existing building
codes. Considering the above, the calibrated neu-
ral network in this study uses an an input a vector
of 41 values of α, one for each component, and it
provides as output the value of median recovery
time obtained from 1000 realizations of running
a recovery model.

3 Dataset generation

As a first step of the calibration of the neural
network, data was generated using the recovery
model developed by (Cook, 2021) for a three story
building located in the city of Oakland. For each
combination of α of the components, 10000 runs
of the recovery model were obtain, each of them
had different realizations of damage, which were
determined by the probabilistic nature of using a
lognormal CDF as a fragility function to sample
damage. This work considers 10000 realizations
for each input vector since it proved to be stable.
In terms of data generation, for each set of 10000
realization, a single output corresponding to the
median value was obtained. To train the neural
network, 20000 values of median recovery times,
each having different combinations of α factors



were obtained. Each combination was sampled
uniformly randomly from a range between 1 and
3 as mentioned above. Given the computational
costs involved in this data generation, to facilitate
the production of these values, the High Perfor-
mance Computing facility at Stanford University,
Sherlock, was used.

4 Approach

4.1 Overview
As presented in the introduction, this work has
two main steps: (1) Neural network training and
(2) Neural network explanation. The first step
has as an objective to develop an accurate neural
network to predict recovery time. The second step
aims to understand the neural network to propose
mitigation actions. More details about each of
these steps are presented next.

4.2 Neural network training
The first step of this work is to calibrate a neural
network to accurately predict median recovery
time. To that purpose, a hypercalibration is per-
formed. Accuracy of the neural network is mea-
sured in terms of coefficient of variation R2 and
bias is measures by taking values of R2 across
different windows of values of recovery time. Us-
ing these metrics, the parameters with highest
accuracy on the validation data are selected from
the hyperparameter calibration. These results are
shown in the section of Results.

4.3 Neural network explanation
The second step involved in this work is to im-
plement neural network explanation models to
motivate mitigation actions. In particular, this
study detects what components seem important
for the neural network and explore how improving
the performance of those component can decrease
recovery time of buildings. Importance in the neu-
ral network for effects of this study is measured
in two ways, (1) as the change of accuracy of the
neural network generated by dropping the com-
ponent from the training, and (2) also importance
is computed using LIME algorithm. The effects
of retrofitting those components is measured by
the recovery model and by comparison with exist-
ing understanding of structural components. To
initiate the experiments aimed at developing a

deeper understanding of the neural network, a
counterfactual validation is performed.

4.3.1 Counterfactual validation
A counterfactual validation aims to evaluate the
capacity of the neural network to predict impor-
tant data points, as defined by the users (in this
case structural engineers), without having ob-
served those cases before. By having the capacity
of doing so, the neural network shows that it is
not only interpolating between known informa-
tion, but it is also learning about the underlying
model, developing the ability to extrapolate its
knowledge. In this study, the contractual infor-
mation considers a comparison with a sensitivity
analysis in which each component is retrofitted
individually, and also the use of edge cases in
which some components are retrofitted jointly
based on their similarity as defined in building
codes. In addition, based on conversations with
experts, this study uses as important data points
to calibrate, those in which non-structural com-
ponents are retrofitted at the same time according
to their structural group. For instance, all compo-
nents that correspond to partitions are retrofitted
simultaneously in these data points.

By doing this conterfactual validation, this
study can prove to skeptics in civil engineering
that this tool has a powerful capability of under-
standing the underlying model and not being just
a non-linear regression, further validating the use
of this neural network.

4.3.2 Simple explanation model
The first explanation model, named here as simple
explanation model, computes the importance of
each component based on the change of accuracy
of the neural network when the component is
excluded during the training process. The bigger
the decrease of accuracy on test data, then the
more important the component is.

4.3.3 LIME explanation model
The second importance variable method imple-
mented is the model developed by (Ribeiro et al.,
2016), in which each input variable has assigned
a global importance weight based on their local
weight associated to local linear regressions. The
bigger the weight is associated to a component,
the more important it is.
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Figure 1: Scatter plot showing results for training
data

Figure 2: Scatter plot showing results for the test-
set

4.3.4 Proposal of mitigation actions

To validate that the results of the variable impor-
tance method are appropriate, a comparison with
expert criteria is performed.

5 Results

5.1 Neural network training

In this section we present the results of the cali-
bration of the neural network on the training and
test set. In the training set, the value of R2 was
0.99, and it reached 0.95 on the test set. Simpler
regression techniques such as linear regression,
Lasso regression and random forests yielded per-
formance of 0.65,0.71,0.80 respectively, showing
that the use of neural networks is appropiate in
this case.

The plot for the test set is shown in Figure 2
Some of the hyperparameters obtained through

the hyperparameter calibration are shown in Table
1.

Table 1: Neural network hyperparameters

Hyperparameter Value
Number of layers 20
Neurons per layer 150

Learning rate 0.0003

Figure 3: Scatter plot showing the results of a
sensitivity analysis computed by using the neural
network versus using the recovery model

5.2 Neural network explanation

5.2.1 Counterfactual validation
• Sensitivity Analysis

As part of the counterfactual validation, the re-
sults predicted by the neural network were com-
pared with performing a sensitivity analysis in
which each component improved its value of α
individually and in steps of 0.1. Note that since
the neural network is trained using a random
combination of αk the specific values used in
the sensitivity analysis have not been directly
observed by the model.

• Performance on important data points

In addition to the sensitivity analysis, we evalu-
ated the performance of the neural network at
predicting Important Data points (ID) as defined
by experts in building recovery. These points
comprise (1) Retrofitting components simulta-
neously if they belong to the same structural
group (2) Incrementally retrofitting all compo-
nents at once, and (3) Retrofitting one compo-
nent at a time, similarly to the sensitivity anal-
ysis shown before. The results of this analy-
sis are presented in Table 2, where ”Random
Sampling” corresponds to the protocol in which
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each α for each components was generated ran-
domly, and is the approach shown in previous
sections. The performance of this approach is
measured in terms of R2 for three datasets of in-
terest: (1) All data, which includes random data
and Important Data points, (2) Important Data
points (ID), and (3) Other data points, which
correspond to random data points. We observe
that while using random sampling ensures an
overall successful performance, it does not show
a high performance for Important Data points.
Motivated by this, we explored two additional
training sampling protocols, one in which some
ID points were added to the training set, and
other in which the training process was only per-
formed in these ID points. As expected, adding
the ID points significantly improved the perfor-
mance at predicting ID points while keeping
and overall performance stable. On the other
side, just training on ID points performed well
on ID points, but showed a poor performance
on the rest of the dataset.

5.2.2 Variable importance algorithms
Two variable importance algorithms are used in
this study. The first one ranks each variable by
the decrease in performance associated to taking
that variable out of the training process, and the
second one is the implementation of submodular
LIME. The results of these implementations are
shown in Table 3, which show elements that gener-
ate a change in R2 of more than 0.01, considered
as meaningful given the uncertainty of the model.
Both variable importance models match respect
to the ranking they provide. They also match the
results of using the recovery model with a one-
at-a-time analysis, which gives credibility to the
obtained results.

5.2.3 Performance of the neural network as
more variables are included

Despite 41 variables are included to generate re-
covery times, some of the components do not
seem to play an important role in the estimation
of recovery time. Motivated by this, we used
the structure of the neural network as a proxy
to define what components should be considered
and which ones should be neglected. To achieve
this, we trained the neural network by incremen-
tally adding variables in the dataset. The order

in which the variables were added was consistent
with the ranking obtained from the variable impor-
tance algorithms. The results of this experiment
are shown in Table 4, where we observe that after
adding the first 10 variables the performance of
the neural network at estimating recovery times
is equivalent to including all 41 variables in the
analysis, therefore the rest of the 31 variables
may not be necessary to estimate recovery times,
and from the perspective of policy making, those
components should not be targeted.

5.2.4 Proposal of mitigation actions

The results of the previous sections on Variable
Importance and Evolving Performance can pro-
vide insights on potential mitigation actions to
decrease recovery time of buildings. From the
Evolving Performance we can confirm which
components do not have an impact on evaluating
recovery times. Moreover, given that the results
of both Variable Importance algorithms is similar,
we can conclude that the proposed ranking pro-
vides an order in which the components could be
retrofitted to minimize recovery.

In addition to the previous proposal of mitiga-
tion actions, we established conversations with
experts in the field, who agreed with some of
the most important components identified by
the neural network such as Partitions, Curtain
walls, Prefabricated stairs and suspended ceilings.
Therefore, the proposal of these elements to be
retrofitted is consistent with expert criteria.

6 Future work

This work showed the potential of using surrogate
models to improve the seismic recovery assess-
ment of buildings. As future work, other building
configurations and locations will be explored. In
particular, we are interested in the performance of
these systems for complex building of several sto-
ries where recovery computations are particularly
slow, therefore it will be critical to analyze how
much data can be used as a minimum threshold
to ensure performance. Once using these surro-
gate models for several buildings and sites has
been validated, we will explore regional models
to analyze public policies aimed at improving the
resilience of our communities.

4



Table 2: Performance of neural network for different training protocols and datasets

Sampling Protocol All data Important Data points (ID) Other datapoints
Random 0.959 0.713 0.942

Random + ID 0.955 0.945 0.944
ID 0.021 0.951 0.001

Table 3: Implementation of variable importance algorithms

Ranking Component Decrease in R2 LIME value
1 Steel stair 0.6361 345.66
2 AC Drops 0.4461 234.98
3 Curtain wall 0.410 226.74
4 Pendant Lighting 0.246 115.78
5 Suspended Ceiling 0.119 59.34
6 Partitions 0.064 27.65
7 Suspended Ceiling II 0.035 25.91
8 Cladding Panels 0.019 12.54
9 HVAC Fan 0.018 10.23

10 Water Piping 0.017 9.87

Table 4: Evolving performance of neural network
by adding variables

Components Component R2

1 Steel stair 0.021
2 AC Drops 0.319
3 Curtain wall 0.489
4 Pendant Lighting 0.581
5 Suspended Ceiling 0.841
6 Partitions 0.857
7 Suspended Ceiling II 0.893
8 Cladding Panels 0.901
9 HVAC Fan 0.933

10 Water Piping 0.958

7 Conclusions

This study introduces a neural network-based sur-
rogate model to estimate building recovery af-
ter earthquakes. The model proved to be around
10,000 faster while still obtaining accurate results.
Besides overall performance, the calibrated neural
network proved to be able to predict some edge
cases such as a sensitivity analysis and Important
Datapoints (ID). However, to improve the perfor-
mance on the later data it is important to include
some of them into the training set.

In addition to the calibrated neural network,
this study implemented variable importance al-

gorithms which led to the identification of the
components that drive recovery time on buildings.
Both variable importance methods showed the
same results, and the exclusive inclusion of the
variables that were tagged as important led to an
accuracy of the neural network similar to using
all the variables, therefore validating these com-
ponents as the ones that define the response of the
buildings.

Finally, the proposal of important components
can lead to the proposal of mitigation actions by
identifying non-structural components that can
have a greater impact at improving the perfor-
mance of our built environment. The proposed
order of components is consistent with expert cri-
teria in the field, further validating the results and
the potential of using neural network-based surro-
gate models.

8 Contributions

This work was mostly developed by Rodrigo
Silva-Lopez. Omar Issa, a Master’s student work-
ing in the research group of Professor Jack Baker,
will continue using these models as part of his
research, therefore he was the one that raised the
need to develop this model and helped to develop
data that adjusted to his needs.
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