
Learning Physically Realizable Turbulent Velocity Fields

Olivia Martin
Mechanical Engineering Department

Stanford University
ogmartin@stanford.edu

Ryan Hass
Mechanical Engineering Department

Stanford University
ryanhass@stanford.edu

Kyle Pietrzyk
Energy Resources Engineering Department

Stanford University
pietrzyk@stanford.edu

1 Abstract

In this project, we look to train a fully-connected neural network (NN) to directly correct low-resolution, large eddy simulation
(LES) snapshots of wall-bounded turbulence. The NN is trained to satisfy conservation equations and reduce error in matching a
variety of spatially averaged quantities obtained from high-resolution data. It is then evaluated by its ability to produce physically
convincing flow fields and accurate spatiotemporally averaged profiles. Due to limitations in time and computational resources,
the resulting NN displays signs of high bias, but further testing shows the potential of the presented methodology.

2 Introduction

Turbulent flows exhibit computationally prohibitive ranges of temporal and spatial scales, but commonly appear in aeroacoustics,
vehicle aerodynamics, combustion, and electronics cooling [1]. By resolving larger energy-containing scales of motion and
using subgrid-scale (SGS) models to account for small scale effects, LES demonstrates computational efficiency in modeling
turbulence and transitional flows [2].

Despite the efficiency and robustness of LES, inaccuracies occur in wall-bounded flows, where the energy-containing scales
become smaller than the grid spacing of a computational mesh near the wall [3]. Due to the increasing popularity of LES [1] and
the pervasive nature of wall-bounded turbulence in engineering applications, it is of high interest to a broad research community
to improve the accuracy of LES while maintaining low computational costs.

We are interested in training a NN to directly “correct”1 the inaccuracies of coarse-resolution LES snapshots from a turbulent
half-channel flow. Specifically, our NN will take in low-resolution data (i.e., velocity and pressure fields) with incorrect statistics2,
propagate the data through fully connected layers, and output “corrected” flow fields that possess accurate statistics.

3 Related Work

While we consider correcting the low-resolution data from a simulation that uses a standard, deterministic SGS model, a majority
of previous works consider learning the appropriate SGS models directly. Summaries of such works are provided below:

• David Ching trained a NN on averaged flow field variables from LES data to predict a model closure for the averaged
Navier Stokes equations [4].

• Gamahara et al. [5] trained a NN on direct numerical simulation (DNS) data to learn the residual stress tensor and act
as a SGS model for LES. The improvements in performance were no better than that provided by a well-known model
introduced in 1963 [6].

• Beck et al. [7] built upon the work of Gamahara et al. by making no assumptions about filtering and discretization schemes.
As a result, they derive an exact LES closure and trained an RNN to predict it. However, the learned closure is numerically
unstable, since it is not the exact the solution, and must be modified for practical use.

1Make small physical changes to the flow field.
2e.g. mean velocity, velocity covariance, etc.

CS230: Deep Learning, Fall 2021, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Figure 1: Left: The wall-bounded domain setup. Middle: The x-z plane of a HR data sample. Right: The x-z plane of a LR
data sample. The contours are used to display the velocity variations in the turbulent flow.

• Park & Choi [8] used a fully connected neural network to predict the subgrid stress tensor for use in channel flow LES.

One notable exception to these works is that of Subramaniam et al. [9], where a NN is trained to directly synthesize physically
consistent small-scale dynamics in turbulence. We draw heavily on this idea in our approach.

4 Dataset and Features

We generated our data set using PadeOps, an LES turbulence simulation code developed at Stanford in Professor Sanjiva Lele’s
lab [10]. Our data set consists of 333 low-resolution (LR) snapshots and 84 high-resolution (HR) snapshots3 of 3D turbulent
channel flow fields. The LR flow fields are used as the inputs to the NN, while the HR flow fields are used to create labels4, as
large-scale flow features are assumed to be properly resolved in the HR data. We normalize velocities by the average center-line
velocity, U0, and pressures by U2

0 . As a result, the velocity components are roughly ≤ 1 and pressure values ∼ O(10). Snapshots
are taken far enough apart in simulation time5 to reduce temporal correlations between snapshots, which lead to longer training
times [7].

We consider a training/dev/test split of 80%/10%/10%, which corresponds to 267/33/33 snapshots of LR data for inputs and
68/8/8 snapshots of HR data for labels. Though the number of LR and HR snapshots are not equal, we emphasize that our goal
is to correct the LR data such that the profiles of spatiotemporally averaged6 quantities (not the point-wise values, nor solely
spatially averaged values themselves) match those of the HR data. Due to the temporally consistent nature of the problem, the
profiles of the spatially averaged HR data do not change significantly from snapshot to snapshot7. Therefore, HR snapshots will
be randomly replicated and reused for more than one input data sample to produce 267/33/33 labels for the input.

5 Methods

Table 1: The hyperparameters used and their values. The hyperparameters with the value “Varied” were tuned in the following
sections due to their considerable influence on the NN performance. GPU memory constraints predominantly limited the
minibatch size to 2 and the number of neurons per hidden layer to 25. The Adam optimizer values are standard.

Architecture Value Adam Optimizer Value Initialization Type Loss Function Value
Learning rate Varied β1 0.9 Weights Xavier λp Varied

of hidden layers Varied β2 0.999 Biases Zeros
Mini-batch size 2 ϵ 10−4

Neurons per layer 25

5.1 The Neural Network

We developed a class-based code that employs Tensorflow to create, train, and evaluate NNs with ease. The input to our NN
is a single LR snapshot of the flow field unrolled into a 1D array. In general, we follow the NN architecture reported in [8]
and use fully-connected layers, ReLU activation functions, and the Adam optimizer with minibatches. Further details on the
hyperparameters used, and those tuned, may be found in Table 1. The output of the NN is a “corrected” flow field as well as
predicted sub-grid stresses. In short, the NN provides the mapping {ũi, p̃} → {ûi, p̂, τ̂ij}.

3LR: 192× 192× 64 and HR: 768× 768× 256 grid-points in the three coordinate directions.
4Spatially averaged flow field profiles to compare with those of the corrected flow fields.
5LR snapshots were taken 5T ∗ apart and HR snapshots were taken T ∗ apart, where T ∗ is the relevant correlation timescale.
6Averaged over spatial dimensions, as well as snapshots (i.e., time)
7i.e., ∂⟨·⟩/∂t ∼ 0, where ⟨·⟩ denotes a spatial average as defined in Table 2.

2

Table 2: The nomenclature used to describe the formulated loss function (i, j ∈ {1, 2, 3}).

Variables Definition

ui, p The true velocity and pressure fields.
⟨·⟩ The averaging operator in x and y, unless otherwise specified.
ui, p The exact large-scale fields (i.e., the spatially filtered ui and p).
τij The sub-filtered stress given by uiuj − uiuj .
ũi, p̃ The inaccurate LES velocity and pressure fields (i.e., inaccurate representations

of the large-scale fields due to SGS model inaccuracies and low resolution).
(·)′ The fluctuating component with respect to the average (i.e., (·)′ ≡ (·)− ⟨(·)⟩).
(̂·) An output quantity from the neural network.

5.2 The Loss Function

To have the NN “correct” LR snapshots in a physical manner, such that they match desired spatiotemporally averaged profiles
from the HR data, we follow [9] to formulate a physics- and data-based loss function,

L = (1− λp)Lcontent + λpLphysics,

which sums losses (weighted by hyperparameter λp) pertaining to 1.) the combined residuals of the momentum and mass
continuity equations, Lphysics ≡ Lmom+Lmass, and 2.) the errors from matching averaged quantities and second order statistics
with the HR data, Lcontent ≡ LU +

∑
(i,j) Luiuj + LP +

∑
(i,j) Lτij .8 The partial losses are defined with the following:9

• Lmom = MS
(

∂2(ûiûj)
∂xi∂xj

+ ∂2p̂
∂xi∂xi

+
∂2τ̂ij
∂xi∂xj

)
, Lmass = MS

(
∂ûi

∂xi

)
,

• LU = MS
(
⟨u⟩ − ⟨û⟩

)
, LP = MS

(
⟨p⟩ − ⟨p̂⟩

)
,

• Lτij = MS
(
⟨τij⟩ − ⟨τ̂ij⟩

)
, Luiuj

= MS
(
⟨u′

iu
′
j⟩ − ⟨û′

iû
′
j⟩
)
,

where the variables are described in Table 2.

5.3 Training Algorithm

After the NN predicts the corrected flow field, the loss is evaluated with the computation of the spatial averages, fluctuating
components, and derivatives. While averaging in the x- and y-directions is trivial, the fluctuating components and sub-filter
stress is computed using the definitions in Table 2. Initially, the derivatives are computed using Fast Fourier transforms in the x-
and y-directions, and a 6th-order compact difference scheme in the z-direction. However, due to the high computational cost,
convolutional filters are quickly adopted for computing the derivatives, which accelerate the computation by a factor of 10. With
the desired averages, quantities, and derivatives for a single output, Lphysics is evaluated from the residuals of the momentum
and continuity equations, while Lcontent is evaluated using the calculated quantities and labels for each training sample.

6 The Evaluation Metrics

The main evaluation criterion of our NN considers accuracy and computational cost. We desire a maximum training time of 7
hours (satisficing metric). After training, we will apply our NN to the test set and compute spatiotemporally averaged profiles
from the corrected flow fields. These profiles will then be compared with those produced from the test labels (i.e., the HR data).
Upon finding the profiles of the corrected flow fields within a standard deviation of those produced with the HR data, we will
consider our NN a success.

Additionally, we will qualitatively consider the visual appearance of the corrected flow fields and determine if they are
distinguishable from the input data (i.e., LR snapshots). We would also like to consider Lphysics as a quantitative measure for
how well the corrected flow fields satisfy physical constraints. Ideally, we would minimize Lphysics (optimizing metric) and use
larger values of λp during training to emphasize the physical constraints; however, due to limitations in data, computational
resources, and time, we do not expect to zero-out the physics loss.

8for (i, j) ∈ {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3)}
9MS

(
f
)
≡ 1

N

N∑
n=1

f2
n, where fn is the value of f at a discrete point n in the computational domain.

3

Figure 2: Left: The total costs per minibatch iteration found while altering the NN architecture for α = 1× 10−5 and λp = 0.1.
Note that “25 Neurons” corresponds to “25 neurons per layer”. Right: The NNs with 3 layers, 25 neurons per layer and 4 layers,
25 neurons per layer were trained longer, as they showed the best potential to quickly obtain low cost.

Figure 3: Left: The total cost per minibatch iteration found while altering λp for a NN with 4 layers, 25 neurons per layer, and
α = 1× 10−5. Right: The total cost per minibatch iteration found for a 4 layer NN with 25 neurons per layer, λp = 0.2, and α
varies (as specified in the plot) over time.

7 Experiments

7.1 Initial Roadblock

While we verified our derivative operators on fabricated test cases, we found non-zero residuals in the momentum and continuity
equations when operating on the ground-truth data (i.e., HR data) near the walls of the domain. We have yet to reconcile this
unexpected result, but due to the high residuals of the HR data in the momentum equation, we decided to only keep Lmass in the
physics loss function. Since satisfying the continuity equation alone would certainly cause the NN to produce non-physical flow
fields, we pursued minimization of the content loss more heavily, as matching the spatial statistics of the HR data offered another
path to producing the correct spatiotemporally averaged profiles.

7.2 Hyperparameter Search

After varying other hyperparameters, including neurons per layer, optimizer, and minibatch size, to find a reasonably working
NN, we used the hyperparameters in Table 1 and tuned the number of layers, λp, and α due to their considerable influence on the
performance of the NN.

To begin, we tuned the number of layers for λp = 0.1, anticipating a small λp in light of the previously described dilemma and
the results reported in [9], and α = 1× 10−5, anticipating large initial gradients. With limited memory for storing parameters,
multiple combinations of neurons per layer and number of layers were tested, but the best (and most time feasible) results were
found with using 25 neurons per layer. On the left of Figure 2, the total cost is plotted with minibatch iteration considering
different numbers of layers to show the variation in the rate of total cost decay. The NN architectures that decreased the total cost
the fastest were then trained for longer on the right of Figure 2. Because 4 layers and 25 neurons per layer provided the best
performance, we used this NN architecture in the tests that followed.

4

Figure 4: Left: Side-by-side comparison of x-z and x-y planes of the input and output x-velocity fields. Right: The
spatiotemporally averaged profiles of the x-velocity and of u′

1u
′
2 (inset) for the test set LR data, corrected flow fields, and test set

HR data. Point-wise standard deviations of the spatially averaged HR profiles are denote by the red shading in both plots (too
small to see in the main plot).

With the confirmed NN architecture, we sought an appropriate value for λp. To do this, we again considered α = 1× 10−5 and
limited the training to 60000 minibatch iterations. As shown on the left of Figure 3, λp = 0.2 offers the fastest cost decay and
the lowest converged cost for 60000 iterations. Due to limitations in time and resources, we decided λp = 0.2 was close enough
to the previously anticipated value λp = 0.1, and did not repeat the previous analysis for convergence of optimal NN architecture
and λp value.

Finally, instead of finding a single value for α to train with, we followed the advice from class and changed α over time. As
shown on the right of Figure 3, we were able to reduce the final cost during training by increasing α over time. This was done for
175000 minibatch iterations (or about 7 hours, which met our satisficing evaluation metric), and resulted in our final trained NN.

8 Results and Discussion

After training, the average loss per training example was 0.001567, and the average loss per test example was 0.001586 (a 1.2%
increase over the training loss). This suggested the NN had low variance, but as the results will show, the NN had high bias. As
shown on the left of Figure 4, the “corrected” velocity fields of the test set do not appear to be physical when compared with
the HR data. Despite achieving a physics loss of nearly 0, the momentum loss was not used, and therefore, the NN was not
necessarily guided to make corrections in a physical manner. In comparing the spatiotemporally averaged profile of the corrected
x-velocity to that of the HR data (right of Figure 4), we find better agreement than that between the LR and HR profiles (lower
L2 error). However, the profile of the corrected flow field does not match that of the HR data to within a standard deviation of
the spatially averaged HR profiles (too small on the plot to see). Additionally, the spatiotemporally averaged profiles of other
statistics (e.g., the inset of ⟨u′

1u
′
2⟩) did not match with those of the HR data; neither qualitatively, nor within a standard deviation.

Overall, we believe utilization of the momentum equation, longer training times, and larger NN architectures could help lower
the high bias.

Despite the inability to match the HR data, the results from further testing suggested the idea pursued in this work could obtain
better results with further tuning, debugging, and longer training times. For example, after scaling the data to keep both mean
and fluctuating quantities between O (1) and O (10), we trained a NN and found the resulting spatiotemporally averaged profiles
evolving towards those of the HR data with less erratic variation in space (see Appendix (Section 11.3)). A similar result was
found when using tanh activation functions instead of ReLU. These results gave confidence that with more time and further
investigation, better results could be achieved with this methodology by increasing training time, and perhaps increasing the
number of parameters, to lower the high bias.

9 Conclusion/Future Work

In this report, we provided preliminary results for a strategy to enhance the accuracy of coarse-resolution LES simulations
using a NN. With an input of LR velocity fields, the NN was trained to correct the fields by minimizing the error in spatially
averaged flow field profiles (content loss) and the residuals of the mass continuity equation. Due to issues with the momentum
loss and limitations in computational resources, we obtain high bias error, as we could not fully train the NN to output physically
convincing velocity fields, nor match all spatiotemporally averaged profiles. However, after completing further testing with
altered data scalings, we gained confidence that with longer training times and more computational resources, we could reduce
the high bias and match the desired spatiotemporally averaged profiles. Upon also resolving the issues with the momentum
loss, we believe the presented methodology could produce a useful NN for enhancing the accuracy of coarse-resolution LES
simulations.

5

10 Contributions

• Ryan Hass: Generated all data using PadeOps; obtained and debugged derivative operators; wrote and debugged loss
function operator; created and presented final report presentation; contributed to submitables (i.e., milestone, final report,
etc.).

• Olivia Martin: Configured AWS; trained NNs using code and data (i.e., completed hyperparameter search); added
modifications to code for NN training/evaluation; contributed to submitables (i.e., milestone, final report, etc.).

• Kyle Pietrzyk: Wrote code for NN creation, training, and prediction; assisted in debugging derivative and loss function
operators; focused largely on submitables (i.e., milestone, final report, etc.).

11 Appendix

11.1 NN Architecture Search: Additional Content

Figure 5: Left: The content loss per minibatch iteration found while altering the NN architecture for α = 1×10−5 and λp = 0.1.
Right: The physics loss per minibatch iteration found while altering the NN architecture for α = 1× 10−5 and λp = 0.1. Note
that “25 Neurons” corresponds to “25 neurons per layer”.

11.2 λp Search: Additional Content

Figure 6: Left: The content loss per minibatch iteration found while altering λp for a NN with 4 layers, 25 neurons per layer,
and α = 1× 10−5. Right: The physics loss per minibatch iteration found while altering λp for a NN with 4 layers, 25 neurons
per layer, and α = 1× 10−5.

11.3 Matching Averaged Profiles for Altered Data Scaling

6

Figure 7: Left: The spatiotemporally averaged profiles of the x-velocity for the test set LR data, corrected flow fields, and test
set HR data with rescaled velocities. Right: The spatiotemporally averaged profiles of u′

1u
′
2 for the test set LR data, corrected

flow fields, and test set HR data with rescaled velocities.

Figure 8: Left: The spatiotemporally averaged profiles of u′
2u

′
2 for the test set LR data, corrected flow fields, and test set HR

data with rescaled velocities. Right: The spatiotemporally averaged profiles of u′
3u

′
3 for the test set LR data, corrected flow

fields, and test set HR data with rescaled velocities.

References
[1] Nicholas Georgiadis, Donald Rizzetta, and Christer Fureby. “Large-Eddy Simulation: Current Capabilities, Recommended

Practices, and Future Research”. In: AIAA Journal 48 (Aug. 2010), pp. 1772–1784. DOI: 10.2514/1.J050232.
[2] Yang Zhiyin. “Large-eddy simulation: Past, present and the future”. In: Chinese Journal of Aeronautics 28.1 (2015),

pp. 11–24. ISSN: 1000-9361. DOI: https://doi.org/10.1016/j.cja.2014.12.007. URL: https://www.
sciencedirect.com/science/article/pii/S1000936114002064.

[3] Javier Jiménez. “Near-wall turbulence”. In: Physics of Fluids 25.10 (2013). DOI: 101302.
[4] David S. Ching. “Geometric sensitivity, wake dynamics, and machine learning turbulence modeling on a skewed bump”.

PhD thesis. Stanford University, 2019.
[5] Masataka Gamahara and Yuji Hattori. “Searching for turbulence models by artificial neural network”. In: Physical Review

Fluids 2.5 (2017). DOI: 054604.
[6] Joseph Smagorinsky. “General circulation experiments with the primitive equations: I. The basic experiment”. In: Monthly

weather review 91.3 (1963), pp. 99–164.
[7] Andrea Beck, David Flad, and Claus-Dieter Munz. “Deep neural networks for data-driven LES closure models”. In:

Journal of Computational Physics 398 (2019). DOI: 108910.
[8] Jonghwan Park and Haecheon Choi. “Toward neural-network-based large eddy simulation: application to turbulent channel

flow”. In: Journal of Fluid Mechanics 914 (2021).
[9] Akshay Subramaniam et al. “Turbulence Enrichment with Physics-informed Generative Adversarial Network”. In: (Work

originated from previous CS230 project) (2020).
[10] Aditya S. Ghate. “Gabor Mode Enrichment in Large Eddy Simulation of Turbulent Flows”. PhD thesis. Stanford University,

2018.

7

