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1 Introduction

Images of spacecraft photographed from other space-
craft operating in outer space are difficult to come
by, especially at a scale typically required for deep
learning tasks. Semantic image segmentation, object
detection and localization, and pose estimation are
well researched areas with powerful results for many
applications, and would be very useful in autonomous
spacecraft operation and rendezvous. However, Wong
et al. [22] notes that these strong results in broad and
common domains may generalize poorly even to spe-
cific industrial applications on earth.

To address this, we have generated a prototype syn-
thetic image dataset labelled for semantic segmenta-
tion of 2D images of unmanned spacecraft, and are
endeavouring to train a performant deep learning im-
age segmentation model using the same, with the ulti-
mate goal of enabling further research in the area of
autonomous spacecraft rendezvous.

2 Related work

Minaee et al. [12] and Ghosh et al. [8] provide recent
surveys of deep learning approaches for semantic im-
age segmentation. Treml et al. [20] discusses semantic
segmentation using deep learning for autonomous ter-
restrial vehicles (i.e. self-driving cars).

Arantes et al. [3] present a discussion of machine vi-
sion pose estimation for on-orbit autonomous satellite
intercept and rendezvous with uncooperative space-
craft using a monocular optical sensor, and Hussain et
al. [9] present a solution for such using convoloutional
neural networks. Kisantal et al. [10] presents a syn-
thetic dataset of images of unmanned spacecraft la-
belled for pose estimation, including images generated
from 3D computer models, and hardware-in-the-loop
simulation using a physical mock-up.

Wong et al. [22] in response to concerns about the
availability of training data at scale for domain-
specific object recognition tasks, proposes a method of
procedurally generating large image datasets from 3D
models based on a small number of physical examples,
labelled for image classification.

3 Dataset

We prepared a synthetic dataset of 60,000 images in
total, consisting of nearly photo-realistic renderings
of one of four open-source 3D models of unmanned
spacecraft published by NASA [13], with accompa-
nying ground truth labels, using the open source 3D
modeling software Blender [4].

Our major hypothesis is that since this the task is
fundamentally about object or component recognition,
images with a degree of verisimilitude to the human

eye would be useful for training deep learning models
that would be effective in a practical application.

3.1 3D models

Figure 1: Chandra spacecraft 3D Model

Figure 2: Corresponding segmentation mask

To provide our dataset with a variety of spacecraft
configurations, we chose the Chandra X-Ray Obser-
vatory, Near Earth Asteroid Rendezvous – Shoemaker
(NEAR Shoemaker), Cluster II, and the IBEX Inter-
stellar Boundary Explorer, as 3D models from which
to generate training, validation, and test images in this
domain.

We made some artistic modifications to the published
3D models in order to be able to generate more real-
istic looking images where possible, and attempted
to simulate the lighting conditions of low-earth or-
bit by illuminating the model with two light sources:
one light source at infinity simulating the intensity,
color, and parallel light rays of the sun, and one planar
light source to simulate earthshine, i.e. the sunlight
reflected by the surface of the earth. As such, our sim-
ulated environment assumes that rendezvous is taking
place on the day side of the earth, which is perhaps not
unreasonable since we are assuming an optical sensor.

We then duplicated the 3D model used for image gen-
eration and manually colored each polygon of the
duplicate model from a discrete set of colors uniquely
associated with one of the class labels. Generation
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of the semantic masks was then accomplished by re-
moving all light sources from the Blender scene and
modifying the shaders, material properties of each
component, and rendering settings such that the ray-
tracer projected only the appropriate color value onto
each pixel of the rendered image based on the cam-
era’s perspective.

3.2 Class labels

We worked with an industry expert to define eleven
class labels for the segmentation task, shown in table
1, along with pixel- and case-level distributions of
class prevalence among images generated from the
four in-distribution spacecraft.

Table 1: Semantic space and distribution
% pixels % cases

0. None / background 93.95% 100%
1. Solar panels 1.75% 100%
2. Solar panel drive shaft 0.03% 49.99%
3. Antenna 0.05% 73.30%
4. Parabolic reflector 0.08% 25.00%
5. Main module 2.90% 100%
6. Telescope 0.58% 25.00%
7. Main thrusters 0.05% 77.03%
8. Rotational thrusters 0.02% 99.99%
9. Sensors 0.53% 98.27%

10. Launch vehicle adapter 0.08% 49.44%

Our objective was both to have a single meaningful
semantic space that covered a variety of spacecrafts
and configurations, and also for the class labels to pro-
vide a clear delineation between components to fixate
on (e.g., the launch vehicle adapter) and components
to avoid (e.g., thrusters) during rendezvous.

3.3 Procedural image generation

We used the Blender API for Python to automate our
dataset generation in a scalable way. A Python script
moves the camera in a spherical pattern around the
spacecraft to one of 5000 positions. For each position,
three rendered images were generated with the same
aspect, but with different ranges; one at the first posi-
tion, and one each from approximately twice and three
times the distance from the spacecraft, thus creating a
total of 15,000 training images from each of the four
in-distribution 3D models, for a total of 60,000 image
and ground truth pairs. The process was then repeated
for the color-coded ground truth 3D model, taking
corresponding renders from identical positions in the
scene.

3.4 Ground truth representation

The procedurally generated ground truth images were
then post-processed using Python’s Pillow library to
better represent a pixel-wise categorical encoding in
the semantic space; we programatically assigned RGB

color values in the generated images to their corre-
sponding class labels, resulting in single-channel im-
ages with pixel values equal to the cardinal number
associated with each category [15]. These single-
channel PNG format images were generated both with
and without embedded color palettes for human and
machine readability.1

An example simulated image and ground truth mask
can be seen in figures 1 and 2, respectively.

3.5 Out-of-distribution test set

In addition to the 60,000 images used for training,
validation, and in-distribution testing, we also gener-
ated an additional 1,500 images for out-of-distribution
testing.

We chose the Deep Space Program Science Experi-
ment (DSPSE, a.k.a. Clementine) as a spacecraft from
which to generate 1,500 synthetic images purely for
out-of-distribution testing, in order to evaluate the
model’s ability to generalize to spacecraft not seen
during training.

4 Methods

4.1 Architectures

We trained U-Net, HRNet, and DeepLab deep image
segmentation models to determine which architecture
performed the best for this task. All models were
trained using Python’s FastAI and SemTorch (an im-
age segmentation library using PyTorch) libraries [7]
[18] [16], to enable rapid testing of different model
designs. In each case, a backbone pre-trained on Ima-
geNet [6] was incorporated to leverage transfer learn-
ing in extracting features from the input image. [6].

4.1.1 U-Net

Ronneberger et al. [17] describes U-Net, which aims
to provide precise localization even when using a
smaller dataset than is typically used for image seg-
mentation tasks. SemTorch [7] uses PyTorch’s [16]
implementation of U-Net.

For the U-Net model we trained, we selected a
ResNet34 backbone. A batch size of 8 was chosen as
the maximum feasible batch size for this model, given
the GPU that was used.

4.1.2 HRNet

HRNet (High-Resolution Net) is a CNN developed
specifically to retain and use high-resolution inputs
throughout the network, resulting in better performing

1The PNG image format encompasses somewhat arbi-
trary color spaces by allowing a single-channel image to
encode values from an arbitrary color palette.
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for pixel labelling and segmenation tasks [21]. HR-
Net aims to provide high spatial precision, which is
desirable in this task due to the variety of classes and
class imbalance [21].

We selected a pre-trained HRNet30 backbone to per-
form feature extraction. A batch size of 16 was chosen
as the largest feasible batch size given available hard-
ware.

4.1.3 DeepLab

DeepLab is a CNN developed and open-sourced by
Google that relies heavily on Atrous Convolution to
perform image segmentation tasks [5]. More specif-
ically, we used the latest iteration of the DeepLab
model at time of writing, DeepLabv3+, as imple-
mented by FastAI. DeepLabv3+ aims to incorpo-
rate the best aspects of spatial pyramid pooling and
encoder-decoder models that leads to a faster and more
performant model overall [5].

In this case, a ResNet50 backbone was selected over
ResNet34 due to limitations with the SemTorch library.
A batch size of 16 was chosen by the same criteria as
before.

4.2 Loss functions

We experimented with three different loss functions;
categorical cross-entropy loss, Dice loss, and a mix-
ture of focal and Dice losses, such choices being moti-
vated by the considerable class imbalance in the data
shown in table 1.

4.2.1 Categorical cross-entropy loss

For each pixel, this function computes the log loss
summed over all possible classes.

CCEi = −
∑

classes

y log(ŷ)

This scoring is computed over all pixels and the aver-
age taken. However, this loss function is susceptible to
class imbalance. For unbalanced data, training might
be dominated by the most prevalent class.

4.2.2 Dice loss

The Dice loss function is derived from the Sørensen-
Dice Coefficient (see §4.3.1), which is robust to class
imbalance as it balances between precision and recall
[19].

(Dice loss)i = 1−
∑

classes(Dice coef.)class

# classes

4.2.3 Dice + focal loss

Focal loss [11] modifies the pixel-wise cross-entropy
loss by down-weighting the loss of easy-to-classify

pixels based on a hyperparamter γ, focusing training
on more difficult examples. The loss is given by:

(Focal loss)i = −
∑

classes

(1− ŷ)γy log(ŷ)

Dice + focal loss blends Dice and focal loss with a mix-
ing parameter α applied to the focal loss, balancing
global (Dice) and local (focal) features of the target
mask. We used the default values of γ = 2 and α = 1
during training.

4.3 Model training

We trained nine image segmentation models for this
task, one with each combination of architecture and
loss function described above, each on the same
randomly selected 49,864 images sampled from our
60,000 image dataset, with a validation set of 5306
similarly selected images, and a test set of 6000. The
input and output layers were fixed at a size of 256 ×
256, and input images were normalized using statistics
from ImageNet [6].

A narrow range of learning rates was selected for each
experiment by varying the learning rate over a small
number of training batches using FastAI’s lr_find()
method and selecting a region of greatest descent for
the loss. Once this region was selected, learning rate
annealing was used during Adam optimization with
otherwise default parameters. Each model was trained
for five epochs, with early stopping at a patience of
two; though the loss appeared to plateau in all cases,
the early stopping criterion was met in none.

Data augmentation (flip with p = 0.5, transpose with
p = 0.5, rotate with p = 0.4) was applied to each
batch during training.2 Weight decay was set to 1e−2
and batch normalization was used.

4.3.1 Model selection criterion

We chose the Sørensen-Dice coefficient as our final
model selection criterion on test data. The Dice coef-
ficient, equivalent to F1 score, is computed pixel-wise
between the predicted and target mask where

Dice coef. =
2TP

2TP + FP + FN
.

For an aggregate measure of model performance, the
Dice coefficient is computed for each class and the
arithmetic mean is taken [14].

4.4 Out-of-distribution test

After selecting a model based on our ultimate criterion,
we evaluated its performance on the 1500 images from
the out-of-distribution test set described in §3.5.

2Augmentation was performed using Python’s
albumentation library [1].
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(a) True mask (b) Predicted mask

Figure 3: Example true and predicted masks, Cluster
II

(a) True mask (b) Predicted mask

Figure 4: Example true and predicted masks, Chandra

5 Results

Table 2 shows Sørensen-Dice coefficients for each
trained model on validation, in-distribution test, and
out-of-distribution (Clementine spacecraft) test sets.
Performance on spacecraft present in the training
and validation sets is consistently reasonable, how-
ever, all of the trained models struggle on the out-of-
distribution spacecraft. The U-Net model with categor-
ical cross-entropy loss met our final model selection
criterion.

Figures 3a through 4b show example ground truth and
model-predicted masks from the in-distribution test

(a) True mask (b) Predicted mask

Figure 5: Example out-of-distribution true and pre-
dicted masks, Clementine

images for the selected model; figures 5a and 5b show
an example on the out-of-distribution test spacecraft.

Table 3 shows per-class Sørensen-Dice coefficients
from the selected model on the in-distribution and
out-of-distribution test data. Categories 6 (Telescope)
and 10 (Launch vehicle adapter) are not present on the
Clementine spacecraft.

6 Conclusions

Our initial results on these synthetic data do show
some promise for semantic image segmentation in this
domain, and that that deep architectures for semantic
segmentation can learn to recognize many different
spacecraft components and categorize them appropri-
ately by type.

Even with a high degree of class imbalance, Dice
loss and Dice + focal loss did not always lead to an
improvement in model performance, perhaps owing
to CCE loss having a smoother gradient than that of
Dice loss, resulting in a less noisy descent path during
optimization. [2].

Our out-of-distribution test shows that the selected
model does not generalize beyond the four main space-
craft in our dataset for every type of spacecraft com-
ponent; our selected model is able to identify those
larger components (main module, solar panels) of the
Clementine spacecraft which have a variety of config-
urations in the training data, but did overfit to smaller
components (sensors, thrusters, etc.), possibly by rec-
ognizing a limited number of examples of each. No-
tably, the selected model mis-classified the parabolic
reflector for the Clementine spacecraft almost entirely
(Dice < 0.001); our synthetic data contained only one
example of this type of component, on the NEAR
spacecraft, which the selected model was able to clas-
sify quite well on test data (Dice ≈ .95).

Thus, it would appear that semantic image segmen-
tation for autonomous rendezvous is achievable with
these methods if the target spacecraft is known, pend-
ing further analysis with physical simulation and on-
orbit testing. Image segmentation for arbitrary targets
may still be achievable with more representative train-
ing data, or perhaps lower variance segmentation mod-
els. Shallower architectures may merit exploration,
since this domain likely has a much smaller collection
of salient features, and a much smaller semantic space,
than more general segmentation tasks.

Further work could be done to make our synthetic
dataset more representative of the total distribution of
unmanned spacecraft; we have based these data on
four publicly available examples.

Nonetheless, we here demonstrate an innovative ap-
proach to data synthesis for domain-specific semantic
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Table 2: Comparison of model results

Sørensen–Dice coefficient
Model architecture Backbone Loss function Validation Test; in-distribution Test; out-of-distribution
DeepLab ResNet50 CCE 0.7703 0.7689 0.2519

Dice 0.7597 0.7593 0.2449
Dice + focal 0.7869 0.7871 0.2502

HRNet HRNet_w30 CCE 0.7618 0.7618 0.2342
Dice 0.7712 0.8043 0.2404
Dice + focal 0.7878 0.7886 0.2371

U-Net ResNet34 CCE 0.8707 0.8723 0.2282
Dice 0.4423 0.4422 0.2284
Dice + focal 0.8389 0.8395 0.2357

Table 3: Per-class Sørenson-Dice, U-Net w/ CCE loss

Sørensen–Dice coefficient
Class Test; in-distribution Test; out-of-distribution

0. None / background 0.9991 0.9972
1. Solar panels 0.9836 0.7673
2. Solar panel drive shaft 0.7142 0.0259
3. Antenna 0.6481 0.0003
4. Parabolic reflector 0.9493 0.0009
5. Main module 0.9838 0.6678
6. Telescope 0.9875 NA
7. Main thrusters 0.8707 0.0100
8. Rotational thrusters 0.6404 0.0046
9. Sensors 0.9486 0.0131

10. Launch vehicle adapter 0.8699 NA

image segmentation tasks which could be applied to
similar problems.

7 Contributions

Jesse Trutna of Stanford’s Space Rendezvous Lab
guided us to pursuing a project in this domain. Kevin
Okseniuk, a system test engineer at Momentus, gen-
erously assisted the group by helping define our class
labels as well as teaching us how to recognize the
components they correspond to. Otherwise, all group
members contributed equally.

8 Code for this paper

This paper has a github repository containing Jupyter
notebooks with ML pipeline and model training code,
Python scripts for procedural dataset generation, and
Blender files of the 3D models that were used.
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