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1 Introduction and Related Work

Over the past two years, COVID-19 has caused over 700,000 deaths with 44 million cases in the
United States alone (1). In an effort to curb the spread of the illness during the peak of the first wave,
42 US states and territories issued mandatory stay-at-home orders (2)). As these lockdowns and stay-
at-home orders became the new normal during the past two years, the US has seen unprecedentedly
low rates of travel, with travel spending decreasing by 42% (nearly $500 billion) from 2019 to the end
of 2020 (3). Decreasing travel became synonymous with preventing the spread of COVID; however,
surveys show that there are major disparities between the percentage of people staying home in each
state with some state percentages as high as 80% and others as low as 5% (4)). Machine learning
techniques have the potential to gain insights from these disparities and their resulting correlations
with COVID cases. As such, we aim to investigate the predictive capabilities of Neural Networks and
several machine learning baselines when applied to US travel data in order to predict the quantity of
COVID cases at a county level.

Machine learning can also aid in the quantification of COVID reporting inaccuracies. A study in
Science Translational Medicine suggests that upwards of 80% of COVID cases in the US during
March 2020 went undetected (5). These massive reporting inaccuracies are further exacerbated by
the vastly different testing capabilities of each state’s healthcare systems. As such, we hope to train
our neural network on data from states that have robust COVID testing and reporting systems (6).
We then intend to use this predictive model to generate a model-specific quantification of reporting
inaccuracies in low-testing states using travel data from these states. Given that there are no ground
truth labels for these states (accurate COVID case numbers), we will be using a combination of
domain knowledge and other proxy economic and social variables to evaluate the performance of our
model for this task.

2 Datasets and Features

Our dataset consists of travel data (trips by distance) from the US Department of Transportation
Bureau of Transportation Statistics, economic indicators from the U.S. Department of Agriculture
Economic Research Service, and COVID case data aggregated by the New York Times (7} 18). Both
the travel data and COVID case data are daily time series at the county level while the economic
indicators are time invariant and taken from the most recent year. We use as input into our model
trips by distance and the economic indicators. We use COVID case counts as our labels. Our dataset
spans from January 21, 2020 to October 9th, 2021. We preprocessed the data by dropping any rows
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Figure 1: COVID-19 Case Counts until October 2021
All Features
County Number of Trips 10-25 Number unemployed annual average
State Number of Trips 25-50 Unemployment rate
Number of Trips Number of Trips 50-100 Estimate of median household Income
Number of Trips <1 Number of Trips 100-250 Median household income percent of state total 2019
Number of Trips 1-3 Number of Trips 250-500 Estimate of people of all ages in poverty 2019
Number of Trips 3-5 Number of Trips >=500 Estimate of people age 0-17 in poverty 2019

Number of Trips 5-10  Civilian labor force annual average
Number of Trips 10-25  Number employed annual average

Table 1: Model Features

with NaN input feature values and/or labels and normalizing our entire dataset to have zero mean and
unit variance. Our final dataset consists of 1,573,394 data points.

2.1 Trips by Distance

The trip by distance data is produced from anonymized mobile data using a weighting procedure
that “expands the sample of millions of mobile devices, so the results are representative of the entire
population in a nation, state, or county”. It is also important to note these following details about
the trips by distance data: “Trips are defined as movements that include a stay of longer than 10
minutes at an anonymized location away from home. Home locations are imputed on a weekly basis.
A movement with multiple stays of longer than 10 minutes before returning home is counted as
multiple trips. Trips capture travel by all modes of transportation. including driving, rail, transit, and
air.” More details on the travel dataset can be found publicly (7). We broke down trips by distance
into the 10 features described in Table [T] that reference the Number of Trips.

2.2 Economic Indicators

In addition to the travel data, our dataset also includes numerous county-level, economic indicators
(unemployment statistics and poverty statistics). This data was included given the close relationship
between these indicators and travel as well as healthcare resources. The full list of features included
in our dataset can be seen in Table|1](9)).

3 Modeling Methods

3.1 Evaluation

To evaluate our models we utilize the Pearson correlation coefficient, 7:
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as a proxy for the linear correlation between our model’s outputted case counts and the true case
counts. We also utilize mean absolute error, M AE, which has been used in prior economic works
{10):
n

The following baseline machine learning models were tested and trained: L1 regularized regression,
L2 regularized regression, and XGBoost decision trees. We then compare the r and M AFE of each
model on a validation set with the  and M AE of 2 layer, 3 layer, 10 layer, 4 layer and 7 layer neural
networks (with varying number of hidden units). We train and test all models using existing machine
learning and deep learning packages (115125135 [14).

L1 Regularized Regression: Our objective for L1 regularized regression is

1
minly = XB3 + ABll (3)

where f3 is our learned coefficient vector, whose L1-norm is penalized by hyperparameter A. By
default, we set A = 1 to assess baseline performance.

L2 Regularized Regression: Our objective for L2 regularized regression is

1
minly = X B3 + AllBI3 @)

where §3 is our learned coefficient vector, whose L2-norm is penalized by hyperparameter A. By
default, we set A = 1 to assess baseline performance.

XGBoost: XGBoost is a popular model based on decision tree ensembles, or a set of clas-
sification trees where leaf values are summed to give a final prediction for a particular respondent
(13). The objective function for XGBoost is
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where ¢; is our model output, [ is our loss, f is a function over the functional space of possible sets
of trees, Q( f) represents the complexity of a tree, and model training is performed by learning one
tree, f, at a time. For training, we use the following default parameters: with colsample_bytree =
0.3, learning_rate = 0.1, max_depth = 5, alpha = 10, n_estimators = 10.

Neural Networks: We train each of our neural networks using the Adam optimizer with
M AF as our loss function and a step-size of 0.01 and for 100 epochs (Note: the default step-size
was 0.001, but we noticed that training for our models was too slow as characterized by a loss curve
that did not exhibit flattening at the final epoch.).

3.2 Training and Dataset Splits

We hypothesize that partitioning our training dataset by state would be an appropriate partition given
the major disparities in testing capabilities. Using the previously mentioned article (6), we took the
data from *VT’, "ME’, '"NY’, 'RI’, "MA’, 'NH’, °’CT’, "HI’, "MI’, "WA’, "MD’, ’"NJ’, "CA’, 'DE’,
"VA’,’CO’, ’FL7, ’IL, ’NC’, ’LA’, 'NM’, "WV’ ’OR’, ’SC’, ’AK’, "GA’, ’OH’, ’AR’, 'PA’, 'MN’,
’IN’, ’NV’, °’NE’, "UT’, ’OK’, ’KY’, 'MS’, ’AZ’, "MO’, "TN’, and *TX’ as our training dataset
(1,273,308 entries) and tested on data from *SD’, "IA’, "WY’, ’ID’, ’KS’, AL’, "MT’, *WI’ which
were reportedly the states that were testing the least (split into validation and test sets each with
136,613 entries).

4 Results

4.1 Validation Set

We evaluated each of our baseline and deep learning models first on a validation set to select a top
performing model as seen in Figure 2] Although the best performing model on M AE was a 2-Layer



Model Pearson’s Correlation MAE

Lasso 0.827212234 2238.494855

Ridge 0.824789774 2312.516492

XGBoost 0.832711927 2036.22094

2 Layer (ReLU) (W=64) 0.850874764 1493.148057

3 Layer (ReLU) (W=64) 0.813584249 1653.832987

10 Layer (ReLU) (W=64) 0.018013689 2659.621369

2 Layer (ReLU) (W=16) 0.8583108982 1502.351529

3 Layer (ReLU) (W=16) 0.84777755 1536.046116

3 Layer (ReLU) (W=9) 0.855034424 1561.403353

7 Layer (ReLU) (Exp-Con) 0.8200906687 1664.354521

4 Layer (ReLU) (Exp-Con) 0.8282978918 1567.432037
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Figure 2: (a) Pearson’s r and Mean Absolute Error (M AFE) on our validation set across all linear,
non-linear, and deep learning models, (b) Predicted case counts against true case counts for the model
highlighted in red, and (c) Plotted error distribution of that same model.

Data Pearson’s Correlation MAE
Test Set 0.8559363283 1514.085948
Recent Data 0.9572112649 5800.219339

Table 2: Test Set and Current Data Results

network with 64 hidden units per layer, we chose the 2-Layer network with 16 hidden units per layer
to avoid potential high bias on the test set (and considering that the 16 hidden unit model performed
slightly better on Pearson’s 7).

4.2 Test Set and End-to-End Performance

Our chosen model performed similarly on the original test set as it did on the validation set, as seen in
Table[2] In addition to testing our model on the test set created from initial data splitting, we pulled
the most up-to-date (as of November 29, 2021) data from the NYT and BTS sources (7 [8), which
included only case counts from the last 30 days, none of which were included in the initial dataset.
Using the same model, we evaluated performance using the same metrics for each prior test and
found that we predicted current case counts quite well, with a Pearson’s r =~ 0.96. These results are
also shown in Figure 3]

5 Conclusion

Due to time limitations, we could not explore all avenues surrounding COVID reporting inaccuracies.
For future work, we would like to consider the following:

1. Exploring the performance of other models such as LSTMs and transformers given their
success in the task of multivariate time series forecasting (13).
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Figure 3: Predicted COVID case counts against true case counts for the month of November 2021

2. More hyperparameter and model tuning surrounding things like batch normalization, dropout,

initialization schemes, (interlayer) activation functions, learning rate decay to decrease
training time, etc.

. Developing a better way to measure how well our models can account for misreporting or

poor data collection. The fact that we have no ground truth about COVID cases in states
with poor testing (and to some degree, all states) poses a major limitation to evaluating our
approach.

. Inputting more time-dependent features into our model such as weather, amount of stores

open in a particular county, number of hospital beds available, etc. This may allow for greater
non-linear modeling by deep learning methods and could lead to more robust predictions.

. Examining our results on the county level to determine potential county- or state-specific

disparities. While we see that our model error’s are visibly normally distributed with p ~ 0
(see Figure[2] it may be true that we are not capturing specific locations as well as others.

In conclusion, we have shown that transportation data and basic economic factors are useful indicators
to predict COVID case counts on the county level across the United States. Deep learning allowed
for nearly a 35% reduction in M AFE and 3% boost in Pearson’s r over regularized regression
models (lasso and ridge) as well as nearly a 20% reduction in M AE from boosted decision trees
(XGBoost). In addition, more complicated neural network architectures that project the data into
higher dimensional spaces seem to not contribute much predictive power, both in terms of Pearson’s
r and M AF, over simpler two and three fully-connected architectures.

6 Contributions

Both Amy and Sameer contributed equally to this project.
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