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Abstract 

 

We focused on a special problem in structural design 

optimization: that of choosing an efficient allocation of 

material volume along a given set of elements connecting 

the nodes in a truss. This is known as sizing optimization 

and has been traditionally solved with non-linear 

mathematical programming, approximations, and insights 

from the Finite Element Method. This is an important 

research topic and has received a lot of attention in the last 

decades. Recently, evolutionary algorithms and neural 

networks have been applied to improve the applications in 

large and complex trusses. 

Here, we explore a new approach using a single Deep 

Neural Network. First, we train the network to learn the 

non-linear relationship between the different cross-section 

areas of the elements in the truss, and the corresponding 

performance, which incorporates the total volume and the 

structure’s stiffness. Then, we use the same network to find 

a new truss with a high performance. We show that the 

method works, significantly improving the structure’s 

performance and can be further generalized to include non-

linear optimization among others. 

 

1. Introduction 

Trusses have been widely used in civil and mechanical 

constructions for at least 200 years. We can model a truss 

as a set of nodes connected by a set of elements. The 

elements are bars of a certain length (‘L’), a certain 

material, and (in our case) a constant cross-section area 

(‘A’). The nodes connect one or more elements together and 

therefore place restrictions on the relative displacements of 

the elements’ ends. 

1.1. Structural analysis of trusses 

When doing linear analysis, for any single element, the 

relationship between the applied force (‘F’) and the 

corresponding deformation (‘’) is 
𝐹

𝛿
=

𝐴∙𝐸

𝐿
, where ‘E’ is a 

constant associated to each material. In this case, both the 

force and the deformation occur along the axis of the 

element and this ratio can be understood as the stiffness of 

the element. This means that the higher the area (and the 

lower the length), the stiffer the element and vice versa. 

To calculate the forces and displacements in all the 

elements and nodes of a truss, we apply cinematic 

transformations to element-specific matrices and vectors, 

which specify applied forces, displacements, and stiffness. 

This process ends with a matrix linear system 𝐹 = 𝐾 ∙ 𝑢 for 

the whole structure, where ‘F’, ‘K’ and ‘u’ are applied 

forces, stiffness matrix and displacements in all the degrees 

of freedom (vertical and horizontal displacements) of the 

structure. The solution of this system gives us resulting 

displacements, internal forces of the elements and reaction 

forces in restricted degrees of freedom. 

1.2. Optimization of trusses 

For a given set of nodes and connecting elements, we can 

ask ourselves which distribution of cross-section areas the 

elements should have. Should we have uniform cross-

section areas or some thicker elements? Which elements 

should be thicker than the others? To answer these 

questions, we need an optimization criterion (objective 

function and restrictions) and some algorithm. 

Traditionally, structural optimization has typically used 

as criterion the minimization of total weight (or volume of 

material) subject to certain restrictions on displacements 

and/or internal forces. Regarding algorithms, an early 

efficient method was developed in the 1970’s and consist 

of non-linear mathematical programming using the Finite 

Element Method (numerical solutions of elasticity 

problems) as a parallel tool [1]. However, for certain 

problem sizes and complexities, this method does not 

deliver great results. More recently, non-gradient methods, 

like evolutionary algorithms, have been developed and have 

very good results despite their higher computational costs 

[2]. Genetic programming has achieved good results in 

sizing optimization (our focus) and in topology 

optimization (which we briefly discuss at the end). Deep 

Learning has also been used, mostly recently, for structural 

truss optimization and it also showed promising results. The 

approach taken by Nguyen, et. al. [3] was to build two 

neural networks, one to learn the Finite Element Method 

approximations of displacements and for a given structure, 
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and another one to find the optimal (minimum volume) 

structure. They used computer generated examples of 

trusses as the dataset. 

1.3. The problem 

For a given truss, if we assume linear behavior of the 

force-displacement relationship of every element, as well as 

relatively small deformations, there is a corresponding 

linear system 𝐹 = 𝐾 ∙ 𝑢  that connects forces and 

displacements. However, the displacements and forces 

depend on the cross-section areas of every element in the 

truss and that relationship is non-linear. Exhibit A shows 

the analysis and optimization problem for a simple truss, 

which can even be done analytically. 

We focused on the question regarding how to efficiently 

allocate construction material to maximize the performance 

(‘P’) of a generic truss, just like the example of the simple 

truss. ‘P’ was defined as the ratio between the structure’s 

overall stiffness (‘S’) and its total volume (‘V’). ‘S’ was 

defined as the ratio between the applied vertical force (‘F’) 

and the corresponding vertical displacement in the same 

node (‘v’). 

Given a set of nodes and elements, for every distribution 

of volume (i.e. a vector containing the cross-section areas 

of every single element), there is a corresponding scalar ‘P’. 

This relationship is non-linear, and our problem consists of 

finding a distribution that achieves a high level of ‘P’.  

2. Our algorithm 

In defining an objective function that incorporates both 

the total volume and the corresponding stiffness, we made 

the optimization criterion simpler than the traditional 

approach, which seeks to minimize the total volume while 

setting restrictions on displacements and internal forces. 

But our focus was on the algorithm, which we explain here. 

First, we generated a large number of random examples 

of a generic truss, each consisting of 625 numbers that 

correspond to the cross-section area of each of the 625 

elements. These 625-dimension vectors were our x(i) 

examples in the dataset. We used the Finite Element 

Method to compute displacements and internal forces for 

every example, and consequently computing the 

performance (‘P’) which is the scalar. The output y(i) is a 

linear transformation of ‘P’. 

Second, we trained a Deep Neural Network to learn the 

relationship between the distribution of cross-section areas 

and the performance of the generic truss. This is what we 

call the first stage of our algorithm. 

Finally, we used the same network to modify an initially 

uniform truss (all cross-sections equal) and increase its 

performance. 

2.1. Generation of the dataset 

For generating the different training examples x(i), the 

general strategy was to introduce variability in terms of 

cross-section areas as well as the corresponding 

performance. 

We used a geometrically inspired strategy to generate 

trusses with various levels of performance. This means that 

we randomly reinforced certain areas of the truss by giving 

a higher-than-average (or lower-than-average) cross-

section area to elements in a specific vicinity. The trusses 

were generated with a random number of theses “hubs” 

ranging from 1 to 10, each of which had a central element, 

a certain dispersion (i.e. how far away from the central 

element the cross-section area gets affected), and a 

modulator (i.e. how different is the cross-section area of 

elements in the hub compared to elements far away.) 

A total of 47,500 examples were generated using this 

technique. 98% of which were used to train the Deep Neural 

Network in the first stage and the remaining 2% were 

Figure 1: A uniform truss (all cross-section areas equal), and two 
examples of randomly generated trusses used for the training of our 

algorithm. The right-hand side of each row show the deformation of the 

structure and its performance. Darker and thicker elements mean higher 

cross-section area. 



 

3 

evenly split to form dev. and test sets. 

Our random generation algorithm achieved a high level 

of variability in terms of cross-section area for every single 

element, as well as corresponding performance. 

 

 
Figure 2: The distribution of the input data shows the high level of 

dispersion of cross-section area for every element, as well as a similar 

distribution for every element in the generic truss. 

 

 
Figure 3: Distribution of performance in the dataset. 

 

The performance of the examples ranged from 0.14 to 

6.19. For reference, a uniform cross-section area truss of 

these characteristics (height, length, number of nodes, 

number of elements and load) has a performance of 5.60, 

which explains the high frequency around this value. Our 

goal is to find a truss that significantly improves this 

number. 

2.2. Network architecture and optimization algorithm 

We used a single neural network for training the dataset 

and for generating the optimal example. We used a deep 

network of purely fully connected layers to (i) first, learn 

the multivariable and non-linear relationship between the 

625 cross-section areas and the corresponding performance, 

and (ii) second, find the optimal 625 distribution of cross-

section areas that deliver a high level of performance. 

The architecture of the network is special because we 

used the same network for two different tasks: first, learn 

the parameters of all the network except for the so called 

“Key layer”. These parameters are trained using the training 

set of 46,550 (98% of 47,500) examples of trusses and their 

corresponding performance. In this first stage, the 

parameters of the Key layer are frozen and set to be: (i) an 

identity matrix for the weights, and (ii) a vector of zeros for 

the biases. In other words, during this stage, the Key layer 

is fully transparent: it is simply letting the different values 

of x(i) to pass forward and then the gradients to 

backpropagate. 

Given that the values of performance in the dataset range 

from 0.14 to 6.19, we normalized them into a new space 

where the range goes from 0 to 1 because we used a cross-

entropy loss function. However, since we are aiming at 

outperforming our dataset, we use a “target ‘y’ value” as the 

high end of the new space which was set to 9.0 based on 

iterative experience. This means that obtaining a 0 in the 

output layer is equivalent to the worst training example and 

obtaining 1 is equivalent to a high-performance truss. We 

decided to focus on the evolution of the Mean Absolute 

Error between �̂�(𝑖)  and 𝑦(𝑖)  because the output has a 

continuous range between 0 and 1. The MAE in the dev. set 

Figure 4: Network architecture. 

Input layer. 

Nx: 625 

Key layer. 

Units: 625 

Activation: Identity 

Main hidden layers (seven in total). 

Units: 128 – 256 – 256 – 256 – 256 – 256 – 128  

Activation: ReLu 

Output layer. 

Ny: 1 

Activation: Sigmoid 
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was 0.025, slightly above the one in the training set, so we 

achieved a low variance in the first stage. 

 

 
Figure 5: Optimization metric during training of first stage. 

 

We used the Adam optimizer with a learning rate of 

0.001, 1 of 0.9 and 2 of 0.999. These hyperparameters 

worked better every single time we tried with different 

ones. Others, such as the number of epochs and network 

size, were tuned by experience. 

Once the network is trained, i.e. having finished the first 

stage, we freeze all the layers except for the Key layer, 

whose biases are now initialized with ones and the weights 

are set to be the identity matrix again. As it will become 

obvious, the weights will not matter. Now, we use the same 

Adam optimizer and the same loss function to train the 

network with one single “training example”. The x(1) is a 

vector of zeros and the y(1) is a number 1. Here we are 

forcing the algorithm to produce biases in the Key layer that 

act as the different units / coordinates of the input layer, 

since all the values in x(1) are zero. And we do so with an 

output value of 1 since we are aiming at the target 

performance. Now, we also add L2 regularization to the Key 

layer biases so that there is additional pressure for the biases 

to be small and hence to improve performance (since the 

biases of this layer are the cross-section areas of the 

optimized truss). 

We used Python as the programming language and the 

TensorFlow library with Keras as the user interface 

framework.  

2.3. Results 

Our algorithm successfully produced highly optimized 

trusses, achieving the target performance. Exhibit B 

contains a brief discussion regarding the technical aspects 

of the optimized design, including the probable reasons 

why certain areas were reinforced and others weakened. 

A simple way to interpret our result is that, with the same 

material volume, a uniform truss will exhibit a deformation 

64% higher than our optimized truss for any given applied 

force. Figure 6 shows the evolution of the optimized truss 

from the initialization (uniform) to the final step of the 

second stage. 

2.4. Hyperparameter discussion 

As mentioned above, the Adam hyperparameters were 

slightly modified to analyze how sensitive the model was, 

but we decided to maintain the default values because no 

improvements were seen. 

Other hyperparameters were defined using a search 

algorithm that ran the two stages of the model 150 times 

with different configurations. These hyperparameters were: 

a. The number of layers and hidden units. 

b. The L2 regularization parameter for the biases of the 

Key layer, which was set to be 5·10-4 for the best results. 

c. The initialization values of the biases of the Key layer, 

which were set to be all ones for the best results. 

d. Finally, the minimum cross-section area. Our algorithm 

naturally reduces the cross-section area of certain 

elements. However, we cannot allow the area to reach 

zero, since that would produce a singular stiffness 

Figure 6: Evolution of the truss during the second stage. It starts as a 

uniform truss with performance 5.6 and ends as a highly optimized truss 

with the target performance of 9.0. 

Mean Absolute Error 
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matrix and therefore, we would not be able to analyze 

the truss as a structure. Hence, during the optimization 

process, we set as restriction that the biases in the Key 

layer could not be less than a certain threshold. This 

threshold was tuned and ended up being 0.12. 

3. Further research 

In the available literature and in the present work, we see 

promising results for further research in the area, namely, 

the application of Deep Neural Networks to structural 

design optimization. As we learnt through the development 

of the present work, the most challenging part can be the 

generation of the data, the selection of the performance 

criteria, and the optimization algorithm with the 

hyperparameters associated to the overall architecture. 

On a positive account, our architecture and optimization 

algorithm could be immediately applied to non-linear 

structural optimization with no incremental cost in the 

deployment, which could be especially promising. This is 

so because the much higher costs associated to calculating 

trusses with non-linear behavior will happen at the data 

generation stage, where calculating the performance for 

every truss will take longer. But once we have generated 

enough x(i), y(i) pairs and trained the model, it should take 

very little computational effort to calculate the best design 

considering non-linear behavior. 

One immediate step for further development is the 

improvement of the optimization criteria: we seek to 

maximize a single construct for the truss that incorporates 

the total volume and the displacement in a certain point—

the performance. We need to normalize this value and aim 

at a fixed target to use a cross-entropy loss function. The 

obvious drawback of this approach is that it might not be as 

strong as we would like in going even further in terms of 

maximum performance. We do not know if our algorithm 

is generating the best possible truss, even with the criteria 

that we are using, and we need to manually try to increase 

the target performance to do so. 

Another point of further development is the 

generalization of the truss geometries. Even though our 

algorithm is general in the sense that we could do the 

training and second stage optimization with any geometry, 

we could extend the power of it by training weights in the 

first stage that can generalize the optimization of the second 

stage. We could train the algorithm with many different 

geometries, not only rectangular, as well as different 

restricted nodes (connections with the environment). This 

way, we could be able to generate an optimal truss of any 

geometry by using the same pre-trained model. This could 

also help us to extend the algorithm from the current sizing 

optimization (defining the cross-section areas) to also 

include topology optimization (which elements to include 

or where to add more). 

Finally, our analysis was performed for a static single 

load, and it could be extended for multiple loads and 

dynamic analysis too. 
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Exhibit A: Structural optimization of a simple truss 

 

We illustrate the problem with a simple case: a two-

element truss with a single unrestricted node where a 

vertical force is applied. 

 

 
Figure 7: A simple truss in its deformed shape due to a load. 

 

Given that there is a single unrestricted node, there are 

only two free degrees of freedom: the horizontal and 

vertical displacements of such node, which we call ‘u’ and 

‘v’ respectively. Free degrees of freedom are those that can 

have displacements because are not restricted.  

 

With this geometry, we have the following 2x2 stiffness 

matrix: 

𝐾 =
𝐸

𝐿
∙

[
 
 
 𝐴1 +

𝐴2

2√2

𝐴2

2√2
𝐴2

2√2

𝐴2

2√2]
 
 
 

 

 

We then solve the linear system that connects 

displacements to applied forces and obtain the scalars ‘u’ 

and ‘v’. 

[
𝑢
𝑣
] = 𝐾−1 ∙ [

0
−𝐹

] =
𝐿 ∙ 𝐹

𝐸
∙

[
 
 
 
 

1

𝐴1

−(2√2𝐴1 + 𝐴2)

𝐴1 ∙ 𝐴2 ]
 
 
 
 

 

 

The stiffness of the overall system (S) is the relationship 

between the magnitude of the applied force (F) and the 

vertical displacement of the unrestricted node (‘v’): 

 

𝑆 = |
𝐹

𝑣
| =

𝐸 ∙ 𝐴1 ∙ 𝐴2

𝐿 ∙ (2√2𝐴1 + 𝐴2)
 

 

And finally, the performance of the system (P) is the 

relationship between the stiffness and the total volume of 

material used in the bars. The idea behind this definition of 

performance is that we could easily achieve a high stiffness 

by using thick bars in all elements, but this would, of course 

be very inefficient and expensive. The total volume of 

material is the sum over all elements of the product between 

their length and their cross-section area. In this case: 

 

𝑃(𝐴1, 𝐴2) =
𝑆

𝑉
=

𝐸

𝐿2
∙

𝐴1 ∙ 𝐴2

(2√2𝐴1 + 𝐴2) ∙ (𝐴1 + √2𝐴2)
 

 

If we define 𝜉 as the ratio between A2 and A1, we can 

rewrite and analytically obtain the optimal performance (P). 

 

𝑃(𝜉) =
𝐸

𝐿2
∙

𝜉

(√2𝜉2 + 5𝜉 + 2√2)
 

 

The solution in this case is 𝜉 = √2, which means A2 

should be larger than A1 by a factor of √2. We have shown 

analytically that this distribution will maximize the 

performance of the system. 
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Exhibit B: Structural commentary of the results 

 

 
Figure 8: Distribution of cross-section areas in the optimized truss. 
 

As it can be seen in the highest performance truss shown, 

the distribution of volume makes sense from a structural 

perspective. The algorithm chooses to reinforce: 

a. The higher left part of the structure, which is subject to 

a high level of tension due to the bending moment 

produced by the load. 

b. The lower left part of the structure, which is subject to 

a high level of compression because of the same reason 

as (a). 

c. The higher right part of the structure, which is receiving 

the load and therefore it concentrates a high level of 

stress, not able to transmit such stress to other elements 

yet. 

d. The center right part, where, absent strong 

reinforcements in the top and bottom, more volume is 

necessary to transmit the shear produced by the load. 

On the other hand, the algorithm chooses to weaken other 

parts: 

e. The lower right part of the structure, since it is not 

receiving nor transmitting a significant amount of stress. 

f. The center left part of the structure, because it does not 

get compression nor tension, and the bulk of the shear 

is being transmitted by the reinforced top and bottom 

parts. 

g. All the elements in the extreme left, since, given that 

they connect two restricted nodes each, cannot suffer 

any deformations and therefore cannot transmit load. In 

other words, it would be a waste of material to place 

elements there. 
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