

1

Abstract

We focused on a special problem in structural design

optimization: that of choosing an efficient allocation of

material volume along a given set of elements connecting

the nodes in a truss. This is known as sizing optimization

and has been traditionally solved with non-linear

mathematical programming, approximations, and insights

from the Finite Element Method. This is an important

research topic and has received a lot of attention in the last

decades. Recently, evolutionary algorithms and neural

networks have been applied to improve the applications in

large and complex trusses.

Here, we explore a new approach using a single Deep

Neural Network. First, we train the network to learn the

non-linear relationship between the different cross-section

areas of the elements in the truss, and the corresponding

performance, which incorporates the total volume and the

structure’s stiffness. Then, we use the same network to find

a new truss with a high performance. We show that the

method works, significantly improving the structure’s

performance and can be further generalized to include non-

linear optimization among others.

1. Introduction

Trusses have been widely used in civil and mechanical

constructions for at least 200 years. We can model a truss

as a set of nodes connected by a set of elements. The

elements are bars of a certain length (‘L’), a certain

material, and (in our case) a constant cross-section area

(‘A’). The nodes connect one or more elements together and

therefore place restrictions on the relative displacements of

the elements’ ends.

1.1. Structural analysis of trusses

When doing linear analysis, for any single element, the

relationship between the applied force (‘F’) and the

corresponding deformation (‘’) is
𝐹

𝛿
=

𝐴∙𝐸

𝐿
, where ‘E’ is a

constant associated to each material. In this case, both the

force and the deformation occur along the axis of the

element and this ratio can be understood as the stiffness of

the element. This means that the higher the area (and the

lower the length), the stiffer the element and vice versa.

To calculate the forces and displacements in all the

elements and nodes of a truss, we apply cinematic

transformations to element-specific matrices and vectors,

which specify applied forces, displacements, and stiffness.

This process ends with a matrix linear system 𝐹 = 𝐾 ∙ 𝑢 for

the whole structure, where ‘F’, ‘K’ and ‘u’ are applied

forces, stiffness matrix and displacements in all the degrees

of freedom (vertical and horizontal displacements) of the

structure. The solution of this system gives us resulting

displacements, internal forces of the elements and reaction

forces in restricted degrees of freedom.

1.2. Optimization of trusses

For a given set of nodes and connecting elements, we can

ask ourselves which distribution of cross-section areas the

elements should have. Should we have uniform cross-

section areas or some thicker elements? Which elements

should be thicker than the others? To answer these

questions, we need an optimization criterion (objective

function and restrictions) and some algorithm.

Traditionally, structural optimization has typically used

as criterion the minimization of total weight (or volume of

material) subject to certain restrictions on displacements

and/or internal forces. Regarding algorithms, an early

efficient method was developed in the 1970’s and consist

of non-linear mathematical programming using the Finite

Element Method (numerical solutions of elasticity

problems) as a parallel tool [1]. However, for certain

problem sizes and complexities, this method does not

deliver great results. More recently, non-gradient methods,

like evolutionary algorithms, have been developed and have

very good results despite their higher computational costs

[2]. Genetic programming has achieved good results in

sizing optimization (our focus) and in topology

optimization (which we briefly discuss at the end). Deep

Learning has also been used, mostly recently, for structural

truss optimization and it also showed promising results. The

approach taken by Nguyen, et. al. [3] was to build two

neural networks, one to learn the Finite Element Method

approximations of displacements and for a given structure,

In Learning we Truss: Structural Design Optimization Using Deep Learning

Vicente Ariztia

Graduate School of Business

Stanford
variztia@stanford.edu

Amber Yang

Computer Science

Stanford
yanga@stanford.edu

2

and another one to find the optimal (minimum volume)

structure. They used computer generated examples of

trusses as the dataset.

1.3. The problem

For a given truss, if we assume linear behavior of the

force-displacement relationship of every element, as well as

relatively small deformations, there is a corresponding

linear system 𝐹 = 𝐾 ∙ 𝑢 that connects forces and

displacements. However, the displacements and forces

depend on the cross-section areas of every element in the

truss and that relationship is non-linear. Exhibit A shows

the analysis and optimization problem for a simple truss,

which can even be done analytically.

We focused on the question regarding how to efficiently

allocate construction material to maximize the performance

(‘P’) of a generic truss, just like the example of the simple

truss. ‘P’ was defined as the ratio between the structure’s

overall stiffness (‘S’) and its total volume (‘V’). ‘S’ was

defined as the ratio between the applied vertical force (‘F’)

and the corresponding vertical displacement in the same

node (‘v’).

Given a set of nodes and elements, for every distribution

of volume (i.e. a vector containing the cross-section areas

of every single element), there is a corresponding scalar ‘P’.

This relationship is non-linear, and our problem consists of

finding a distribution that achieves a high level of ‘P’.

2. Our algorithm

In defining an objective function that incorporates both

the total volume and the corresponding stiffness, we made

the optimization criterion simpler than the traditional

approach, which seeks to minimize the total volume while

setting restrictions on displacements and internal forces.

But our focus was on the algorithm, which we explain here.

First, we generated a large number of random examples

of a generic truss, each consisting of 625 numbers that

correspond to the cross-section area of each of the 625

elements. These 625-dimension vectors were our x(i)

examples in the dataset. We used the Finite Element

Method to compute displacements and internal forces for

every example, and consequently computing the

performance (‘P’) which is the scalar. The output y(i) is a

linear transformation of ‘P’.

Second, we trained a Deep Neural Network to learn the

relationship between the distribution of cross-section areas

and the performance of the generic truss. This is what we

call the first stage of our algorithm.

Finally, we used the same network to modify an initially

uniform truss (all cross-sections equal) and increase its

performance.

2.1. Generation of the dataset

For generating the different training examples x(i), the

general strategy was to introduce variability in terms of

cross-section areas as well as the corresponding

performance.

We used a geometrically inspired strategy to generate

trusses with various levels of performance. This means that

we randomly reinforced certain areas of the truss by giving

a higher-than-average (or lower-than-average) cross-

section area to elements in a specific vicinity. The trusses

were generated with a random number of theses “hubs”

ranging from 1 to 10, each of which had a central element,

a certain dispersion (i.e. how far away from the central

element the cross-section area gets affected), and a

modulator (i.e. how different is the cross-section area of

elements in the hub compared to elements far away.)

A total of 47,500 examples were generated using this

technique. 98% of which were used to train the Deep Neural

Network in the first stage and the remaining 2% were

Figure 1: A uniform truss (all cross-section areas equal), and two
examples of randomly generated trusses used for the training of our

algorithm. The right-hand side of each row show the deformation of the

structure and its performance. Darker and thicker elements mean higher

cross-section area.

3

evenly split to form dev. and test sets.

Our random generation algorithm achieved a high level

of variability in terms of cross-section area for every single

element, as well as corresponding performance.

Figure 2: The distribution of the input data shows the high level of

dispersion of cross-section area for every element, as well as a similar

distribution for every element in the generic truss.

Figure 3: Distribution of performance in the dataset.

The performance of the examples ranged from 0.14 to

6.19. For reference, a uniform cross-section area truss of

these characteristics (height, length, number of nodes,

number of elements and load) has a performance of 5.60,

which explains the high frequency around this value. Our

goal is to find a truss that significantly improves this

number.

2.2. Network architecture and optimization algorithm

We used a single neural network for training the dataset

and for generating the optimal example. We used a deep

network of purely fully connected layers to (i) first, learn

the multivariable and non-linear relationship between the

625 cross-section areas and the corresponding performance,

and (ii) second, find the optimal 625 distribution of cross-

section areas that deliver a high level of performance.

The architecture of the network is special because we

used the same network for two different tasks: first, learn

the parameters of all the network except for the so called

“Key layer”. These parameters are trained using the training

set of 46,550 (98% of 47,500) examples of trusses and their

corresponding performance. In this first stage, the

parameters of the Key layer are frozen and set to be: (i) an

identity matrix for the weights, and (ii) a vector of zeros for

the biases. In other words, during this stage, the Key layer

is fully transparent: it is simply letting the different values

of x(i) to pass forward and then the gradients to

backpropagate.

Given that the values of performance in the dataset range

from 0.14 to 6.19, we normalized them into a new space

where the range goes from 0 to 1 because we used a cross-

entropy loss function. However, since we are aiming at

outperforming our dataset, we use a “target ‘y’ value” as the

high end of the new space which was set to 9.0 based on

iterative experience. This means that obtaining a 0 in the

output layer is equivalent to the worst training example and

obtaining 1 is equivalent to a high-performance truss. We

decided to focus on the evolution of the Mean Absolute

Error between �̂�(𝑖) and 𝑦(𝑖) because the output has a

continuous range between 0 and 1. The MAE in the dev. set

Figure 4: Network architecture.

Input layer.

Nx: 625

Key layer.

Units: 625

Activation: Identity

Main hidden layers (seven in total).

Units: 128 – 256 – 256 – 256 – 256 – 256 – 128

Activation: ReLu

Output layer.

Ny: 1

Activation: Sigmoid

4

was 0.025, slightly above the one in the training set, so we

achieved a low variance in the first stage.

Figure 5: Optimization metric during training of first stage.

We used the Adam optimizer with a learning rate of

0.001, 1 of 0.9 and 2 of 0.999. These hyperparameters

worked better every single time we tried with different

ones. Others, such as the number of epochs and network

size, were tuned by experience.

Once the network is trained, i.e. having finished the first

stage, we freeze all the layers except for the Key layer,

whose biases are now initialized with ones and the weights

are set to be the identity matrix again. As it will become

obvious, the weights will not matter. Now, we use the same

Adam optimizer and the same loss function to train the

network with one single “training example”. The x(1) is a

vector of zeros and the y(1) is a number 1. Here we are

forcing the algorithm to produce biases in the Key layer that

act as the different units / coordinates of the input layer,

since all the values in x(1) are zero. And we do so with an

output value of 1 since we are aiming at the target

performance. Now, we also add L2 regularization to the Key

layer biases so that there is additional pressure for the biases

to be small and hence to improve performance (since the

biases of this layer are the cross-section areas of the

optimized truss).

We used Python as the programming language and the

TensorFlow library with Keras as the user interface

framework.

2.3. Results

Our algorithm successfully produced highly optimized

trusses, achieving the target performance. Exhibit B

contains a brief discussion regarding the technical aspects

of the optimized design, including the probable reasons

why certain areas were reinforced and others weakened.

A simple way to interpret our result is that, with the same

material volume, a uniform truss will exhibit a deformation

64% higher than our optimized truss for any given applied

force. Figure 6 shows the evolution of the optimized truss

from the initialization (uniform) to the final step of the

second stage.

2.4. Hyperparameter discussion

As mentioned above, the Adam hyperparameters were

slightly modified to analyze how sensitive the model was,

but we decided to maintain the default values because no

improvements were seen.

Other hyperparameters were defined using a search

algorithm that ran the two stages of the model 150 times

with different configurations. These hyperparameters were:

a. The number of layers and hidden units.

b. The L2 regularization parameter for the biases of the

Key layer, which was set to be 5·10-4 for the best results.

c. The initialization values of the biases of the Key layer,

which were set to be all ones for the best results.

d. Finally, the minimum cross-section area. Our algorithm

naturally reduces the cross-section area of certain

elements. However, we cannot allow the area to reach

zero, since that would produce a singular stiffness

Figure 6: Evolution of the truss during the second stage. It starts as a

uniform truss with performance 5.6 and ends as a highly optimized truss

with the target performance of 9.0.

Mean Absolute Error

5

matrix and therefore, we would not be able to analyze

the truss as a structure. Hence, during the optimization

process, we set as restriction that the biases in the Key

layer could not be less than a certain threshold. This

threshold was tuned and ended up being 0.12.

3. Further research

In the available literature and in the present work, we see

promising results for further research in the area, namely,

the application of Deep Neural Networks to structural

design optimization. As we learnt through the development

of the present work, the most challenging part can be the

generation of the data, the selection of the performance

criteria, and the optimization algorithm with the

hyperparameters associated to the overall architecture.

On a positive account, our architecture and optimization

algorithm could be immediately applied to non-linear

structural optimization with no incremental cost in the

deployment, which could be especially promising. This is

so because the much higher costs associated to calculating

trusses with non-linear behavior will happen at the data

generation stage, where calculating the performance for

every truss will take longer. But once we have generated

enough x(i), y(i) pairs and trained the model, it should take

very little computational effort to calculate the best design

considering non-linear behavior.

One immediate step for further development is the

improvement of the optimization criteria: we seek to

maximize a single construct for the truss that incorporates

the total volume and the displacement in a certain point—

the performance. We need to normalize this value and aim

at a fixed target to use a cross-entropy loss function. The

obvious drawback of this approach is that it might not be as

strong as we would like in going even further in terms of

maximum performance. We do not know if our algorithm

is generating the best possible truss, even with the criteria

that we are using, and we need to manually try to increase

the target performance to do so.

Another point of further development is the

generalization of the truss geometries. Even though our

algorithm is general in the sense that we could do the

training and second stage optimization with any geometry,

we could extend the power of it by training weights in the

first stage that can generalize the optimization of the second

stage. We could train the algorithm with many different

geometries, not only rectangular, as well as different

restricted nodes (connections with the environment). This

way, we could be able to generate an optimal truss of any

geometry by using the same pre-trained model. This could

also help us to extend the algorithm from the current sizing

optimization (defining the cross-section areas) to also

include topology optimization (which elements to include

or where to add more).

Finally, our analysis was performed for a static single

load, and it could be extended for multiple loads and

dynamic analysis too.

4. References

[1] L. A. Schmit, H. Miura, 1976, “A New Structural

Analysis/Synthesis Capability-ACCESS 1”

https://arc.aiaa.org/doi/10.2514/3.61405

[2] Hirad Assimi, Ali Jamali, Nader Nariman-zadeh, 2017,

“Sizing and topology optimization of truss structures using

genetic programming”

https://www.sciencedirect.com/science/article/pii/S2210650

217300251

[3] Long C. Nguyen, H. Nguyen-Xuan, 2020, “Deep learning for

computational structural optimization”

https://www.sciencedirect.com/science/article/pii/S0019057

820301415

https://arc.aiaa.org/doi/10.2514/3.61405
https://www.sciencedirect.com/science/article/pii/S2210650217300251
https://www.sciencedirect.com/science/article/pii/S2210650217300251
https://www.sciencedirect.com/science/article/pii/S0019057820301415
https://www.sciencedirect.com/science/article/pii/S0019057820301415

6

Exhibit A: Structural optimization of a simple truss

We illustrate the problem with a simple case: a two-

element truss with a single unrestricted node where a

vertical force is applied.

Figure 7: A simple truss in its deformed shape due to a load.

Given that there is a single unrestricted node, there are

only two free degrees of freedom: the horizontal and

vertical displacements of such node, which we call ‘u’ and

‘v’ respectively. Free degrees of freedom are those that can

have displacements because are not restricted.

With this geometry, we have the following 2x2 stiffness

matrix:

𝐾 =
𝐸

𝐿
∙

[

 𝐴1 +

𝐴2

2√2

𝐴2

2√2
𝐴2

2√2

𝐴2

2√2]

We then solve the linear system that connects

displacements to applied forces and obtain the scalars ‘u’

and ‘v’.

[
𝑢
𝑣
] = 𝐾−1 ∙ [

0
−𝐹

] =
𝐿 ∙ 𝐹

𝐸
∙

[

1

𝐴1

−(2√2𝐴1 + 𝐴2)

𝐴1 ∙ 𝐴2]

The stiffness of the overall system (S) is the relationship

between the magnitude of the applied force (F) and the

vertical displacement of the unrestricted node (‘v’):

𝑆 = |
𝐹

𝑣
| =

𝐸 ∙ 𝐴1 ∙ 𝐴2

𝐿 ∙ (2√2𝐴1 + 𝐴2)

And finally, the performance of the system (P) is the

relationship between the stiffness and the total volume of

material used in the bars. The idea behind this definition of

performance is that we could easily achieve a high stiffness

by using thick bars in all elements, but this would, of course

be very inefficient and expensive. The total volume of

material is the sum over all elements of the product between

their length and their cross-section area. In this case:

𝑃(𝐴1, 𝐴2) =
𝑆

𝑉
=

𝐸

𝐿2
∙

𝐴1 ∙ 𝐴2

(2√2𝐴1 + 𝐴2) ∙ (𝐴1 + √2𝐴2)

If we define 𝜉 as the ratio between A2 and A1, we can

rewrite and analytically obtain the optimal performance (P).

𝑃(𝜉) =
𝐸

𝐿2
∙

𝜉

(√2𝜉2 + 5𝜉 + 2√2)

The solution in this case is 𝜉 = √2, which means A2

should be larger than A1 by a factor of √2. We have shown

analytically that this distribution will maximize the

performance of the system.

Restricted nodes

(no displacement) Free node and

applied force

Vertical

displacement of

loaded node (v)

7

Exhibit B: Structural commentary of the results

Figure 8: Distribution of cross-section areas in the optimized truss.

As it can be seen in the highest performance truss shown,

the distribution of volume makes sense from a structural

perspective. The algorithm chooses to reinforce:

a. The higher left part of the structure, which is subject to

a high level of tension due to the bending moment

produced by the load.

b. The lower left part of the structure, which is subject to

a high level of compression because of the same reason

as (a).

c. The higher right part of the structure, which is receiving

the load and therefore it concentrates a high level of

stress, not able to transmit such stress to other elements

yet.

d. The center right part, where, absent strong

reinforcements in the top and bottom, more volume is

necessary to transmit the shear produced by the load.

On the other hand, the algorithm chooses to weaken other

parts:

e. The lower right part of the structure, since it is not

receiving nor transmitting a significant amount of stress.

f. The center left part of the structure, because it does not

get compression nor tension, and the bulk of the shear

is being transmitted by the reinforced top and bottom

parts.

g. All the elements in the extreme left, since, given that

they connect two restricted nodes each, cannot suffer

any deformations and therefore cannot transmit load. In

other words, it would be a waste of material to place

elements there.

	1. Introduction
	1.1. Structural analysis of trusses
	1.2. Optimization of trusses
	1.3. The problem

	2. Our algorithm
	2.1. Generation of the dataset
	2.2. Network architecture and optimization algorithm
	2.3. Results
	2.4. Hyperparameter discussion

	3. Further research
	4. References

