
Universal Representation Learning for Faster
Reinforcement Learning

Alex Loia
Department of Computer Science

Stanford University
alexloia@stanford.edu

Alex Nam
Department of Computer Science

Stanford University
hjnam@stanford.edu

Abstract

Traditional refinforcement learning (RL) approaches, like Q learning, excel when
environment states are provided for training agents. However, many RL applica-
tions do not have access to hand-crafted state features and need to work with pixel
data. Naively running these images through Q learning, however, performs quite
poorly across most environments. Instead, we explored a variety of representation
learning methods, based on Contrastive Unsupervised Representation Learning
(CURL) [7], to provide relevant state encodings learned from task-aware image
data that are then used to learn optimal actions via Q learning. We found that
our encoding approaches enable RL agents to outperform purely pixel-based deep
Q learning but leave room for improvement when compared to the state-based
baseline.

1 Introduction

Reinforcement learning (RL) is a type of unsupervised learning, where an agent learns to act optimally
through interactions with the environment, which returns a next state and reward given some current
state and the agent’s choice of action. Thus, a policy, a reward signal, and a model of the environment
define RL learning systems [13]. The learning objective is to learn a policy, mapping states to actions,
in order to maximize rewards from the environment.

In this project, our goal is to learn lower-dimensional representation for RL from pixel data. In many
realistic settings, such as mobile robots and self-driving vehicles, RL agents do not have access to
underlying state features and instead need to work directly with high-dimensional pixel inputs. To
mitigate the burden of handcrafting state encodings, we have applied several deep learning techniques
for learning representations directly from the pixels jointly with the RL objective. Specifically, we
focused on state-of-the-art technique, Contrastive Unsupervised Representation Learning (CURL) [7].

Our Contributions and Highlights:

• Our work improves on CURL by exploring different data augmentation techniques on pixel
inputs since the CURL paper only presents results from random shifts.

• We apply CURL encoder to deep Q network instead of Soft Actor Critic.
• We employ ResNet18 architecture for convolutional representation encoder.
• We incorporate limited knowledge about the underlying state features (e.g., cart’s speed and

angular velocity in CartPole domain) to speed up representation learning for RL.

CS230: Deep Learning, Fall 2021, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



2 Related Work

2.1 Double Deep Q Network learning

Double deep Q learning is an improved version of deep Q learning, which uses a neural network
to estimate action values in current states. Then for selecting optimal actions, the argmax action is
selected after predicting the Q value for each action. Deep Q learning uses an experience replay,
or replay buffer, to disentangle temporal correlations between state-action-next state tuples [10].
Additionally, double Q learning uses two value functions with separate weight parameters, to mitigate
over-optimism, so that the Q function used for selecting the argmax action is different from the Q
netwrk used for estimating the value of the chosen action [15]. We used double DQN in our project.

2.2 Experimental Domain

Our work uses CartPole environment from the OpenAI Gym package [3]. The Gym environment
constructs both the well-defined low-dimensional states, representing the cart’s position, speed, pole
angle, and pole angular velocity, and also gives access to the raw pixel data. With low-dimensional
states, each dimension is discretized into 7 possible ranges, so the total size of the state space is
74 = 2401. The actions are 0 for pushing the cart left and 1 for pushing right. Our goal is to train the
agent to keep the pole standing for as long as 200 timesteps, with each surviving step rewarded by
one.

2.3 Contrastive Representation Learning through Data Augmentation

We derive the our implementations’ primary structure from CURL [7]. CURL assembles a frameset
of 4 images to encode from each batch and apply different random shifts to create anchor and positive
pairs. These framesets are inputted to the CNN encoder that outputs a feature embedding. All other
framesets comprise negatives. Thus, the loss represents how much the encoder cam maintain anchor-
positive similarity and anchor-negative dissimilarity, promoting distinct embeddings. The CURL
approach is derived as a simplification of van den Oord et al.’s LSTM-based encoding method [11].
The CURL loss1 is optimized with Soft Actor Critic (SAC) [12] with the architecture seen in Fig 1.

(a) CURL Architecture [7] (b) CURL Encoder Loss Function

Figure 1: CURL Specifications

Since CURL’s loss is minimized alongside RL losses, CURL’s encoder trains along with the DQN
of Mnih et al. [10]. CURL’s implementation atop other RL methods informed our applications
of the technique across experimental formulations. As we experimented with generating anchor,
positive, and negative observations with different augmentations besides random cropping, the Kornia
package [2] was instrumental in producing transformed images.

3 Dataset & Features

We used the OpenAI Gym CartPole environment to train and evaluate the agents online on the final
learned policies. CartPole frames are 400x600x3 (Fig 4). The agent applies forces to the cart to keep
the pole upright for a maximum of 200 timesteps.

1In this case, q represents the anchor set of frames, k+ represents the positive frames, W is the parameter
matrix for a bilinear product used to compute logits, and K is the set of frame-sets in the batch. This loss
function objective can be generalized as a differentiable dictionary lookup task.

2



Using the Kornia library [2], we explored eight different transforms in addition to random shift (as
in original CURL) to construct positive and negative pairs for contrastive learning, including color
jittering, color inversion, color equalization, fisheye warping, Gaussian blur and noise, perspective
shifting, and horizontal flipping.

4 Methods

As in Fig 5, we implemented 5 different methods: A is the baseline DQN with a convolutional
header for mapping pixel inputs to scalar Q values; B uses CURL to learn lower dimensional state
representations from high-dimensional pixel observations; C uses ResNet18 to generate hidden
features of size 512 from pixel data, then trains these 512-dim vectors with the CURL objective.

We explored two different scaffolding methods. Scaffolding is providing agents with limited access
to state by augmenting embeddings with cart speed and pole angular velocity. In method D, instead
of feeding in a single frame, we stacked two frames representing current/past observations to
provide implicit temporal information. Method E appends the cart’s and the pole’s velocities to the
embeddings. While CURL alone does not guarantee that the embeddings include all relevant features,
we can force the inputs to the DQN to contain necessary state information by augmenting with the
true state features. While we understand this assumption does not hold in domains where true states
are completely unknown, we proposed them as alternatives to our previous methods which make no
assumption about the environment but perform poorly compared to state-based Q learning.

In methods A-C and E, only one observation frame was used as the encoder input. Using the
CURL architecture, we then tried a variety of augmentations as described in the Dataset & Features
section, comparing results from different augmentation techniques. Some of the more disorienting
augmentations like fisheye or elastic transform would only be applied with probability 0:5 to avoid
modified data from diverging too far from the original pixel distributions.

As shown in Fig 7, method C uses a pretrained ResNet18 with a fully connected last layer mapping
512 intermediate features to 1000 classes. Instead of using the last 1000 outputs, we used the hidden
512 features and unfroze the weights of the last 4 layers to continue trainining the ResNet model with
CURL.

5 Experiments

5.1 Neural Network Architecture

Our goal is to extract embeddings from inputs and map these embeddings to a scalar Q value per
action. The RL agent consists of (i) convolutional layers (without or without pretrained ResNet18
weights) to process pixel data, and (ii) fully connected layers with 1 output representing the Q value
estimate.

• Methods C and D using ResNet18 models. CartPole pixel inputs are mapped to 512
embeddings before feeding into fully-connected Q network.

• Method B without ResNet18. Used embedding size of 50, which were then mapped to
action values through the fully connected Q network. We used smaller embedding size
because the true states were only 4 so allowing the encoder to output higher-dimensional
features might include too much extraneous information that hurts the model’s performance.

• Method E with low-dimensional state scaffolding. Used embeddings of size 48 which were
outputted by convolutional layers. Then the embeddings were appended by the cart’s speed
and the pole’s angular velocity into a sized 50 embedding vector.

• Method A with convolutional layers plus DQN (baseline using raw pixel data): Used the
following NN structure: input dimensions were [400, 600, 3], passed through [32 kernels of
size 5 with stride 5], followed by [64 kernels of size 4 with stride 2], and [64 kernels of size
4 with stride 1]. The results were flattened into 13056-dimensional vectors, which were fed
into fully connected layers of [512] hidden units. Then the final Q value estimate was scalar
per action.

• Q network from the learnable embeddings to action value estimates: Used 2 fully connected
layers of 50 hidden units followed by ReLU activation. The final Q value estimate was also
scalar per action.

3



(a) Pixel versus State Features (b) Image Transforms

Figure 2

(a) ResNet18 (b) Ours versus Default DQN with Pixel Inputs

Figure 3

5.2 Reinforcement Learning Training Parameters

RL training parameters were applied consistently to all models. The adjustable parameters included:
� for determining how often to take greedy versus random actions,
 for discounting future rewards
relative to the immediate reward at the next time step, batch size (i.e., how many samples to update
the Q network parameters with), and replay buffer size (how many tuples to keep in memory before
swapping out with newer ones). Based on our preliminary runs on state-based CartPole, we concluded
that if the agent can keep the pole standing for over 195 steps, then learning is successful; and decided
on the following RL parameters to use for pixel inputs as well:

• � : 0.5, with a decaying factor of 0.999
• 
 : 0.99
• Batch size: 32 (how many state-action-next state-reward tuples are used per Q update)
• Replay memory size: 200
• 1000 max training episodes and 200 steps per episode.
• Double DQN parameter: online Q network weights are copied to the target network every

100 episodes

We tried increasing� because we suspected if� was decaying too quickly, then the Q function might
learn a policy that repeats the sub-optimal actions without improving its action value estimates.
However, we observed that a higher� , 0.8 instead of 0.5, with 0.2 as the minimum value, did not
make a difference.

6 Results and Discussion

We evaluated our models based on (1) episode rewards from the �nal learned policy, and (2) number
of training steps required to achieve rewards above 195. Figures 2 and 3 show the number of training
episodes on the x-axis and cumulative returns per episode on the y-axis. The higher the returns, the
better the RL agent is performing. These returns were observed by running the models directly in the
online CartPole environment while taking� -greedy actions.

4


	Introduction
	Related Work
	Double Deep Q Network learning
	Experimental Domain
	Contrastive Representation Learning through Data Augmentation

	Dataset & Features
	Methods
	Experiments
	Neural Network Architecture
	Reinforcement Learning Training Parameters

	Results and Discussion
	Conclusion
	Contributions
	Appendix

