
Deep learning approaches for the Lyft Motion
Prediction for Autonomous Vehicles challenge

Augustine Chemparathy
Department of Management Science & Engineering

Stanford University
agchempa@stanford.edu

Hugo Vergnes
Department of Statistics

Stanford University
hugo.vergnes@stanford.edu

Abstract

Our project predicts the trajectory of "agents," including pedestrians, bikes, and
cars, in the vicinity of a moving self-driving vehicle, termed the "ego". This
project is part of an entry in the Kaggle Competition "Lyft Motion Prediction
for Autonomous vehicles." We are provided a 20GB dataset of over 40 million
frames of motion of Lyft self-driving vehicles and surrounding agents. We are also
provided a rasterizer to create series of bird’s-eye images of these recorded scenes.
To this day, we have tried different approaches in PyTorch[4]: (1) generating images
with the rasterizer to feed into a ResNet, (2) using a sequence model to forecast
trajectories, and (3) using geometric approaches with PointNet and GNN. In this
final report, we will describe each approach as well as the results we obtained
throughout our project.

1 Introduction

Automated vehicles are the ultimate goal of a race between major tech companies (Uber, Lyft, Tesla
etc). In the last decade, deep learning has enabled major breakthroughs in this industry, but at the
state of the art the performances are still not sufficient to allow productions of AV’s. To increase
performance and reduce the risk of bad maneuvering, the AV needs to be able to predict the motion
of surrounding agents just as a human operator would. In this project, we are tasked with predicting
the trajectory of a given agent over a sequence future frames given historical data.

2 Dataset and Features

The Kaggle competition provides a 21GB dataset consisting of over 16,000 scenes recorded from a
Lyft vehicle, in which each scene consists of several hundred frames [2]. In total, we are provided
over 21 million frames for each of the train and the validation dataset. The data is previously split into
train, validation and test sets by the host. The test set has hidden ground-truth values and is used to
assess submissions to the Kaggle competition. The dataset is available in a compressed format in .zarr
which allow for the same operations as numpy. The competition host also provides a Python library
(L5Kit) to help load, train on, and evaluate on the data. To describe each scene, we have 15 different
features. The most important includes frame-by-frame data such as the centroid coordinates and yaw
of ego and the agents, as well as metadata describing each agent such as probability distribution of
agent types (e.g. pedestrian, car, bicycle). A rasterizer is provided to generate bird’s-eye view images
of the scenes. An example of such an image is provided in Figure 1.

CS230: Deep Learning, Fall 2020, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



Figure 1: Example of the output of the rasterizer

3 Methods

We describe below the deep learning approaches we have tested for this problem. We initially used
average MSE loss between the predicted centroids and ground-truth centroids. After our Milestone
report, we moved all models to output multi-mode predictions, in which k hypothesized trajectories
and k associated confidences (summing to 1) are reported. The Kaggle competition suggests using
multi-mode prediction because it better captures the uncertainty in agents’ movements. We typically
predicted 3 possible trajectories.

The following loss function, provided by Lyft, is used for multi-mode prediction, where ck is the
confidence of the k’th trajectory, x̄k

t is the predicted x-coordinate of the k’th trajectory at frame t,
and xk

t is the true x-coordinate at frame t. In line with a suggestion from Kaggle user KKiller, we
multiply the loss by three to more closely match the loss on Kaggle:

L = −3 × log
∑
k

elog ck− 1
2

∑
t(x̄

k
t−xt)

2+(ȳk
t−yt)

2

3.1 ResNet Baseline

Lyft trained a ResNet50 model [1] with MSE loss to serve as a baseline for this competition. This
approach takes as input 10 sequential images of the scene (produced by rasterization) and predicts the
x and y coordinates of an agent’s position over the following 50 frames. In order to recapitulate the
Lyft model as the baseline for our project, we downloaded a ResNet50 model pretrained on ImageNet,
modified the input and output layers to be dimensionally compatible with our given task, and trained
the network with the multi-mode prediction loss function. This allowed for results close to their
baseline.

3.2 Geometric Approaches

Our initial intuition was that this problem was geometric. The standard approach and the most
successful one was to use a ResNet to segment the images fed in and then compute a predictive
trajectory with respect to the other agents identified on the map. However, this method is necessarily
suboptimal since we are generating image and then trying to segment them. There is necessarily
an error in the segmentation that we could bypass since we already have that information in the
metadata.

Geometric approaches have the tremendous advantage that we don’t need to rasterize images of the
scene (which requires substantial computational time) and we can learn directly on numeric variables
in the scene metadata, such as the centroids of all agents. As an example of comparison, running a
ResNet of the full dataset takes a 8 days whereas running a GNN takes 18 hours and a PointNet takes
less than 8 hours.

2



3.2.1 PointNet

PointNet [5] is a deep-Learning algorithm that takes as input an unordered point cloud. This approach
is really different from the main approaches. It was initially proposed by KKiller, a competitor within
the competition. We can feed an unordered set (PointCloud) in this model made of the different
features of the scene. As an arbitrary choice recommended by the competition host, we chose 8 of
the most significant agent related features to train our model (Position, yaws, type etc). Our PointNet
had 21 milion parameters, allowing us to feed in a Batch size of 115 points in a GPU of size 11GB.

3.2.2 Graph Neural Network

PointNet is a great layer for a Neural Network as it allows to run 1D convolution on an unordered
Point Cloud. However, the type of convolution is pretty simple and it clusters points in centroids,
thus running convolution only on the closest neighbors in the latent space.

To run convolutions on the entire Point Cloud we designed a Graph Neural Network. We used
a maximum of 150 agents per frames and we connected them all together. We then designed a
Graph Neural network for multi-modal prediction to run on this fully connected graph using Sage
Convolution. The update rule of a Sage-Convolution [6] is detailed below. The message passing step
agglomerates of each agents. The matrix W1 and W2 allows to put more weights on the relevant
nodes.

x′i = W1xi + W2 · meanj∈N (〉)xj

There is many type of graph convolution that are featured in torch geometric, the sub module of
Pytorch we used to generate our graph. The go to type for trying would be Graph Convolutions
[7]. We also tried GIN convolution which are often used as a very powerful type of convolution [3].
However we opted out for Sage Convolutions which don’t require a fully connected layer between
each Graph Convolution Layer. Indeed the use of GIN induced a lot of additional parameters that
were overloading our GPU. We obtained better result using a larger batch size permitted by the fewer
number of parameters of SageConv. We had 2M parameters in our final 7 layers network.

3.3 Encoder-Decoder seq-seq translation

Because the problem we are given is intrinsically a sequence prediction problem, we also evaluated a
sequence-based approach. This neural network is a encoder-decoder model using two LSTM’s and
is adapted from an implementation by Kaggle user Kramadhari. We modified the encoder-decoder
implementation to add the historical yaws as well as centroids to the feature vectors and to output
multi-mode predictions. To further optimize this model, we tuned the size of the encoder and decoder
hidden layers as well as the size of the first fully connected layer.

The original model had encoder and decoder with hidden layer size 128 and fully-connected layer
size 256. Because multi-mode prediction results in an output of size 303, we experimented with
increasing the size of these layers. We report the results for two high-performing models; the “large
hidden layer” model has hidden layer of size 512, and the “large fc layer” model has fully connected
layer of size 512.

3.4 Encoder-Decoder seq-seq translation with ResNet

We also designed a model that uses ResNet to generate embeddings of the ten historical frames,
which are inputted as a sequence to the LSTM. The final output of the LSTM is fed into a fully
connected layer with ReLu activation, and then a fully connected layer with no activation. The
standard dataloader creates 2 separate images for each historical frame — 1 containing the ego and 1
containing all other agents. These two images were stacked and input to the ResNet to compose a
2-channel “image” for each historical frame.

Because of the very high time and computational cost of training a model incorporating ResNet, we
used ResNet18 instead of ResNet50, which is the larger architecture used by the baseline model. We
also trained a “large hidden layer; large fc layer” variant of this network with hidden layer of size
1024 and fully connected layer of 512.

3



4 Results and Analysis

Approach Minimum validation loss
Resnet50, Lyft baseline 82.246

Resnet18 40.93
LSTM-LSTM encoder-decoder 77.29

LSTM-LSTM encoder-decoder; large hidden layer 105.23
LSTM-LSTM encoder-decoder; large fc layer 85.93

ResNet18-LSTM encoder-decoder 878.63
ResNet18-LSTM encoder-decoder; large hidden and fc layers 1494.16

PointNet 64.95
GNN 97.14

The ResNet model was very time-consuming to train, because it requires the rasterization of the
images, that needs to be performed on a CPU. Because of the large size of the training set, each
iteration takes a lot of time to process, so each experiment had to be carefully evaluated before
running. We estimate that training ResNet on the full train dataset (crucial for performance) will take
weeks if not over a month.

Our PointNet has allowed us to pass Lyft’s baseline model on Kaggle, with a maximum score of 64
against the baseline score of 82. For the PointNet, we are taking batches of 110 sample points (as big
as the GPU can hold) and we are running the model between 20 and 40 epochs with a cosine annealing
scheduler (initially proposed). We tried to change the scheduler with a OneCycle scheduler to force
the learning rate to get bigger values at the beginning of the training but the results where significantly
worse than with the initial cosine annealing. Results are shown in Figure 2. Our interpretation of this
result is that the cosine annealing allows to increase the learning rate several time, whereas it happens
only once with the One Cycle scheduler, thus reducing the chances to be stuck in a local minimum.
During our experimentations, we realized that our PointNet was relatively robust. In the sense that
different choice of hyper-parameters had small effects. And the performance quickly stabilized after
20 epochs for roughly 7 hours of training. Also, as seen in figure ??, we identified a learning rate to
be optimal between 0.001 and 0.003. The blue curve is the under-fitting learning curve for a learning
rate of 0.0003.

Figure 2: The purple curves is the validation loss for a cosine annealing scheduler, the three curves
above are the results for different experimentation of a One Cycle Scheduler. In x we can see the
number of the batch fed in the networks, and in y it is the value of the validation loss

We also implemented a Graph Neural network, which proved to have a similar efficiency. Since we
are using a fully connected GNN, the "perceptive field" of each agent is every other agent in the scene
whereas in the PointNet it was only the agents that were close to it. Naturally, we are processing a
bigger representation of the scene since we need to store as well the edges. It forced us to reduce the
batch size to 15 scenes and augmented the time per epoch from 30 minutes for the PointNet to an
hour and a half for the GNN. However, our Graph Neural Network showed interesting expressiveness.
The loss were still significantly reducing after 15 epochs whereas for our PointNet it was roughly
stabilized at 15 epochs. To improve both of our model, we would advise our reader to fine-tune the
size of the spheres used the Furthest-sampling-point algorithm for the PointNet [5] as it is essential to
compete significant information around each agents. Since the GNN was particularly long to train,
we couldn’t experiment as much on it. But we would advise the reader to work on reducing the
number of edged in the graph since it is what take the most space in our GPU.

A drawback of the sequence-to-sequence LSTM approach is that it fails to capture data about the
scene that can only be derived from images, such as positions of other vehicles, lane markings, and

4



Figure 3: Three sample trajectories produced by the LSTM-LSTM encoder-decoder. Ground truth in
red; predicted trajectories in blue

so on. Nevertheless, this model achieved comparable minimum average validation loss to the ResNet
baseline. This may be because most ego’s tend to follow fairly predictable trajectories (such as
moving forward in a straight line, or moving in a parabola when turning a corner). It is likely that the
sequence-to-sequence LSTM approach successfully predicts many of the most typical trajectories,
but cannot predict complex trajectories that depend on the trajectories of multiple agents in the scene
— for example, when a car in the left turn lane waits before turning because of traffic in the other lane.

To visualize the results, we provide three sample trajectories output by our best-performing LSTM-
LSTM encoder-decoder model in Figure 3. The trajectories represent predictions with (1) high, (2)
intermediate, and (3) low loss. These trajectories are usefully for gaining intuition about this model
— in general, this model seems to prefer long, consistent trajectories. In case (1), we see that the
ego remained stationary but 2 out of 3 trajectories predicted by the model show substantial motion.
In case (2), the model simply predicts movement in the incorrect direction. In case (3), the model
captures the groundtruth trajectory well.

In order to capture some of these high-level relationships between elements of the scene, we exper-
imented with using a ResNet to generate embeddings of historical frames, which are fed into the
LSTM. Because of the very long training time for the ResNet, we were not able to train this model
for long enough to reduce the validation loss substantially. This approach is especially challenging
because of the relatively large number of images that must be trained on in each iteration — for
example, if the batch size is 8, and each example has 10 historical frame and 1 current frame, then
the ResNet encoder must be trained on 88 different images, instead of 8. This greatly increases the
computational demand of this approach, and led us to use the smaller ResNet18 model instead of
ResNet50. It is likely that with more training time and resources, this approach could be optimized
to produce better results than the sequence-to-sequence LSTM because it captures higher-level
relationships between elements of the scene.

5 Conclusions

Of the models that we trained, three achieved lower validation error than the Lyft baseline, and one
achieved comparable validation error to the Lyft baseline. Therefore, we believe that our project
was successful in its goal of creating competitive models for the Lyft competition. Despite being
architecturally simple and also smaller than ResNet50, ResNet18 achieved the best performance out
of all of the models that we tested.

6 Contributions

Augustine Chemparathy ran experiments on the LSTM-based encoder-decoder models and the
resnet-LSTM encoder-decoder model. Hugo Vergnes ran experiments on the PointNet and GNN
approaches. Both authors wrote the paper and prepared the video. For further information
of our project, we would advise the reader to look our github repo that can be found here:
https://github.com/BowenRaymone/KaggleLyftCompetition

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition, 2015.

5



[2] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, A. Jain, S. Omari, V. Iglovikov, and P. Ondruska.
One thousand and one hours: Self-driving motion prediction dataset. https://level5.lyft.
com/dataset/, 2020.

[3] Jure Leskovec Stefanie Jegelka Keyulu Xu, Weihua Hu. How powerful are graph neural networks?
2019.

[4] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[5] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation, 2017.

[6] Jure Leskovec William L. Hamilton, Rex Ying. Inductive representation learning on large graphs.
2019.

[7] Tong H. Xu J. et al. Zhang, S. Graph convolutional networks: a comprehensive review. 2019.

6

https://level5.lyft.com/dataset/
https://level5.lyft.com/dataset/

	Introduction
	Dataset and Features
	 Methods 
	 ResNet Baseline 
	 Geometric Approaches 
	 PointNet 
	 Graph Neural Network 

	Encoder-Decoder seq-seq translation
	Encoder-Decoder seq-seq translation with ResNet

	Results and Analysis
	Conclusions
	Contributions

