Tweet like @InsertNameHere

Victoria Magdalena Dax
Department of Aeronautics and Astronautics
Stanford University
vmdax @stanford.edu

Abstract—In the past month, Twitter saw record levels of
election-related conversation on their platform and President
Trump’s account metrics even hit global records. This work aims
at analyzing his tweeting style and attempts to mimic it. We will
perform a statistical analysis on his most recent tweets, train a
tweet generator as well as a classifier to decipher and predict
the semantics of his unique dialect.

Index Terms—Text Generation, LSTM, Naive Bayes’, PCA

I. INTRODUCTION

Social media has almost become synonymous with “big
data” due to the sheer amount of user-generated content.
Mining this rich data can prove unprecedented ways to keep
a pulse on opinions, trends, and public sentiment, relevant
for marketing, branding, and business as a whole. While
there are many popular social media platforms, Twitter
provides an interesting blend of data, the tweet contents, and
meta-data, such as location, hashtags, users, re-tweets, etc. In
the past month, Twitter saw record levels of election-related
conversation on their platform and President Trump’s account
metrics even hit global records. We want to answer the
question of why his tweets have so much gravitas, how
Donald Trump’s unique dialect is so recognizable, and
whether we can build a neural network to predict and mimic
his vocabulary?

Despite the constant negative press covfefe

@realDonaldTrump

We will be developing a word-based text/tweet generator
using recurrent neural networks (RNNs), perform an analysis
of the learned embedding matrix through principal component
analysis (PCA) and finally, we will train a Naive Bayes’
classifier to distinguish the President’s tweets from others
and see whether our tweet generator can fool the classifier.
We will also be performing statistical word frequency and
sentiment analysis to get a better understanding of the data at
hand.

Disclaimer: This work is not meant, in any way, to offend
or provoke any group. It is not a statement of political
opinions, beliefs, or principles of the author.

This project is used for CS229 and CS230. We propose
evaluating the tweet generation network towards CS230 and
the principal component analysis and Naive Bayes’ classifier

towards CS229. The code for this project can be found here:
https://github.com/victorialena/tweetLikeInsertNameHere.git

II. RELATED WORK

Synthetic text generation is challenging and has had limited
success in the past. There are two fundamentally different
approaches to the task, character-based and word-based
models. Both ultimately learn a conditional language model
(LM), which gives the probability distribution of the next
word in a sequence over a given dictionary of possible
words: p(wp41 | w1, ... Wn—1,wy,). Word-based LMs tend to
display higher accuracy and lower computational cost than
char-based LMs, as they require much bigger hidden layers
to successfully model long-term dependencies which means
higher computational costs, [[I]. But, char-based LMs can
mimic grammatically correct sequences, and interestingly
enough, model languages with a rich morphology such as
Finish, Turkish, or Russian much better then word-based
LMs. The bottom line however is that word-based LMs tend
to train faster and generate more coherent texts overall.

For a long time, conditional text generation relied on
Seq2Seq models, [2], which consists of two Recurrent
Neural Networks (RNN), an encoder and a decoder, that
when concatenated try to predict the next state sequence
from the previous one. However, texts generated with RNNs
remain often far from making actual sense, as a single wrong
prediction can make the entire sentence meaningless. Another
limitation is that it can not be parallelized since RNNs need
to process data as a sequence.

A model receives a sequence of tokens, i.e words, and
transforms them into static vectors that encode the meaning
of the referenced word. These representations are called
embeddings and were introduced as Word2Vec model, [3].
These embedding preserve syntactic and semantic word
similarities, such that they lend themselves to mathematical
operations: KING - MAN + WOMAN = QUEEN.

Recent techniques consists of incorporating context into
word embeddings; replacing static vectors with contextualized
word representations. ELMo introduced this type of word
embedding in 2018, [4], where vectors are learned functions
of the internal states of a deep bidirectional language model.
With this representation, the model can distinguish between
homonyms, such as “rock” referring to a stone or the music

https://github.com/victorialena/tweetLikeInsertNameHere.git

genre.

A new architecture, called Transformers was released by
Google in 2017 in the paper “Attention Is All You Need”, [5].
Similarly to Seq2Seq, Transformers use an encoder, decoder
and a final linear layer. But they consist of self-attention
and point-wise, fully connected layers, rather than recurrent
or convolutional layers. Consequentially, sequences are
not required to be processed in order, which allows for
parallelization. BERT and GPT-2, using Transformers in their
cores, have shown a great performance in tasks such as text
classification, translation, summarization.

III. DATASET AND FEATURES

In order to perform our complete analysis of President
Trump’s tweeting style, we initially estimated requiring
around ten thousand tweets. Luckily the president has a
tendency to document his every thought on social media. We
used Twint, an acronym for Twitter Intelligence Tool - 6], to
scrape tweets from specific users. We compiled a dataset of
fifteen thousand tweets posted by user @realDonaldTrump.
These were used to train the tweet generator with a
5% validation set partition. We further compiled a
thousand additional tweets by @BarackObama, @BillGates,
@justinbieber, @ ArianaGrande, @ TheEllenShow, @ YouTube,
@KimKardashian, @cnnbrk, @twitter, and @TheDailyShow
each. These users happened to be the most engaging user
of the past year. Their tweets, in addition to 60% randomly
sampled ones from the first batch, were used to train the
Naive Bayes’ classifier with a 10% testing and validation set
partition. The following are some excerpt tweets.

Democrats always liked that position until I took it.
They hate Fake News and so do 1.

@realDonal Trump

Data prepossessing included cleaning out links and web-
addresses, filtering out uncommon punctuation and alternate
characters - but keeping hashtags # and usertags . We further
dropped tweets that were less than three words, only kept the
50 most frequent usertags referenced by the author, and split
tweets into individual sentences.

For the tweet generator, the tokenizer normalized everything
to lower case and limited the word count to ten thousand.
For the Naive Bayes’ classifier, we as well normalized the
dictionary but kept every word that appeared in at least 5
tweets.

IV. METHODS

A. Tweet generation

Conditional language models (LMs) are at the core of
text generation. A statistical LM is a probability distribution
over sequences of words, such that, given a sequence of

length n, it assigns a probability p(w,...,w,) to the whole
sequence. In consequence, we can use a conditional LM to
find the probability of the next word in a sequence, namely
P(Wnt1|wiy .. wpy).

Recurrent Neural Networks (RNN) are dominating complex
machine learning problems that involve sequences of inputs.
It is a class of neural networks that allow previous outputs
to be used as inputs. Such kind of architecture allows the
network to learn and generalize across sequences of inputs
instead of identifying individual patterns. For each timestep ¢,
the activation a(*) and the output y*) are expressed as follows

a(t) = ga(Waaa(til) + Wamx(t) + ba)
y(t) - gy(Wyaa(t) + by)

where a(*) is passed to the next node as an additional input
with 2+, The main limitations of standard RNNs is
the vanishing/exploding gradient phenomena, induced by
the multiplicative nature of gradients that decrease/increase
exponentially with respect to the number of layers, which
also affects its ability to capture long-term dependencies.
Enter Long Short-Term Memory units (LSTM). LSTMs are
constituted of internal mechanisms called gates to regulate
the flow of information.

First, the previous hidden state and the current input get
concatenated and fed into the forget layer. This layer removes
non-relevant data. A candidate layer is created using the
concatenated state, which holds possible values to add to the
cell state. The concatenated state also get’s fed into the input
layer, which decides what data from the candidate should be
added to the new cell state. After computing the forget layer,
candidate layer, and the input layer, the cell state is calculated
using those vectors and the previous cell state. The output
is then computed, and multiplied element-wise with the new
cell state to get the new hidden state.

RNNs and LSTMs can also be used as generative models.
This means that in addition to being used for predictions
they can learn the sequences of a problem and then generate
entirely new plausible sequences for the same problem
domain. Generative models like these are useful not only
to study how well a model has learned a problem, but to
learn more about the problem domain itself. For example,
by training the tweet generator we find an embedding matrix
which encodes the proximity of words in our vocabulary.

Through experimentation, we observed that increasing the
number of RNN-type layers beyond three and batch size
beyond 512 resulted in overfitting, failing to reach accuracies
beyond 0.25 on the validation set. We ended up using two
LSTM layers with 256 units each followed by two fully-
connected layers, as represented in fig. [I} The input to the
network is a tweet subsequence of ten words. For tweets
longer than ten words, we adopted a sliding window approach,

splitting the tweet into multiple subsequences of length ten.
For shorter tweets, we zero-pre-padded the sequence. The
output of the model is a probability distribution of the next
word over the vocabulary.

Model: "sequential"

Layer (type) Output Shape Param #
embedding (Embedding) (None, 9, 150) 1500000
1stm (LSTM) (None, 9, 256) 416768
1stm_1 (LSTM) (None, 256) 525312
dense (Dense) (None, 1250) 321250
dense_1 (Dense) (None, 10000) 12510000

Total params: 15,273,330
Trainable params: 15,273,330
Non-trainable params: @

Fig. 1. Model Summary

A fairly unconventional choice was using a SELU activation
for the first dense layer, which helps with vanishing gradients.
Since we are mapping a categorical distribution, using a
softmax activation on the final layer is a natural choice as
well as using the categorical cross entropy loss.

VI
="y " logg”

Using an Adam optimizer with a learning rate of 8¢~%, a batch
size of 128 and an embedding size of 150, we trained the
model over 100 epochs.

B. Principal Component Analysis

Principal component analysis, short PCA, is a non-
probabilistic approach to finding a subspace representation
of given data. The aim is to keep as much information as
possible, thus the method is to maximize the cumulative
variance over all data points when projected onto the
subspace. For this project, we wish to use PCA to map the
learned word embeddings into 2D space in order to gain some
insight into the structure of President Trump’s vocabulary.

First, we center and whiten the data, by subtracting the
mean and normalizing the rows of our embedding matrix.
We compute the empirical covariance matrix and find it’s
eigenvalues and vectors. Then we choose the eigenvectors
corresponding to the two highest eigenvalues - those are
our two principal components - and project each row of
the embedding matrix onto this newly defined plane. How
representative these projections are can be determined by

evaluating Z: :\\ Our 2D representation yields only 6.5%; we
would yield 9% if we were to map to 3D space and for 90%,
which is commonly considered a significant representation, we
would require 100D space.

C. Naive Bayes’ classifier

We used a Naive Bayes’ approach to classify tweets, dis-
tinguishing whether or not user @realDonaldTrump was the
author. This approach is part of generative supervised learning,
which means that instead of learning p(y | x) directly, p(y)
and p(xz | y) are learned and Bayes’ rule is applied when
making predictions. The assumption this specific approach
is making, is that all features x are considered independent
given label y. We opted for a multinomial event model, where
each feature xgj) represents the ith word in the jth tweet
of length d;. Thus p(z; | y) = ¢,,, maps the probability
of word x; over the vocabulary given y, which follows a
categorical distribution. p(y = 1) = ¢, follows a binomial
distribution, since we attempt a binary classification. Thus the
log-likelihood is defined as

n n_ 4
{ = Zlogp(yj) + Zzlogp(wy) | v;)

The update rule can be derived from the maximum likelihood
estimates as follows.

Sl = kg =13+ 1
> Wy =11+ |V
YWy =1
n

¢k\y=1 =

¢y:1

Evidently, we applied Laplace smoothing to avoid zero
estimates for rarer words in the vocabulary. We established
our dictionary by evaluating nine thousand tweets by @re-
alDonaldTrump and a total of ten thousand tweets by other
popular verified Twitter users as outlined in sec Only
lower-cased words that appeared in over 5 tweets were added
to the dictionary.

V. EXPERIMENTS/RESULTS/DISCUSSION

We started by evaluating a word frequency analysis; the
results are represented in fig [2] It comes to no surprise that
the words “people” and “country” are recurrent themes as
President Trump holds a public office. We further find the
emblematic “great” and “fake news” in his frequent vocabu-
lary, but he surprisingly tweets more often “democrat” than
“republican”.

radical left best

witch hunt

going

election

congres

news media

El
=
o
=
py
Y
2

<

ar

wall

e news

republican

Fig. 2. Word Could of 150 most frequent words

VADER, short for Valence Aware Dictionary and sEntiment
Reasoner - , is a lexicon and rule-based sentiment analysis
tool that is specifically attuned to sentiments expressed in
social media. We take the compound score, a metric that
calculates the average over all the words’ individual ratings, to
perform sentiment analysis on tweets by @realDonaldTrump.
The results are presented in fig. 3] with -1 being the most
negative and +1 the most positive score possible. We can see
that the majority of his tweets are very polarizing.

2000

1500

1000

500

Fig. 3. Sentiment Analysis

The architecture described in sec. and depicted in fig.
[[] was the model that best balanced validation accuracy and
coherence of generated tweets. The later metric is evaluated
by generating 50 tweets of maximum ten words each and
labelling them whether they are a grammatically coherent
sequence of words.

Through hold-out cross validation, we performed a hy-
perparameter grid-search over learning rate, batchsize and
embedding size. The grid-search varied the learning rate be-
tween 1le 3 and 1le~* in a log-uniform manner, and evaluated
batchsizes of 1024, 512, 256, and 128, and embedding sizes of
50, 100, 150 and 300. We found that a learning rate of 8e 4,
a batchsize of 128 and an embedding size of 150 yielded the
best results. Lower learning rates resulted in requiring over
250 training epochs while a learning rate of le—3, which is
the default for the Adam optimizer in Tensorflow, led to a
premature stagnation of the loss. The resulting training history
is shown in fig [It still seems that the model is overfitting
to the training data a bit. The metadata was satisfactory, thus
we didn’t attempt training with more data or trying smaller
network architectures.

We found a final validation accuracy of 0.654 and a
coherence of 54%. The following are some examples of
generate tweets:

Make America great again and then keep America great!

I will win again tonight.

The tax system is paying for the federal reserve.

Socalled birthright citizenship which costs our country billions
of dollar!

@InsertNameHere

Using principal component analysis, our learned embedding

Training History

6 —— training
—- walidation

Loss

0 20 40 60 80 100

— training
-~ validation

Fig. 4. Training History

matrix is mapped to 2D space, fig [5] Interestingly, “nancy”,
“joe”, “hillary”, “bernie” and “donald” are mapped to the up-
per right corner while “pelosi”, “biden”, “clinton”, “sanders”
and “trump” are mapped closely together in the center of the
space, splitting first from last names. Surprisingly, there was
no coherent mapping of locations, states such as “texas” or
“carolina” and countries such as “russia” or “china” seem
to be projected uniformly across the plane. Finally, we find
vocabulary relating to news, like “press” or “@cnn”, to be
projected along the 100 deg axis, and words referring to a
public office, such as “taxes” or “party”, perpendicularly along
the —115deg. Words referring to the election, for example
“rally” or “ratings”, are mapped to the space in between. What
a coincidence.

Fig. 5. Word Map Excerpt

The Naive Baye’s classifier is trained to distinguish the

President’s tweets from tweets by other verified users -
namely @BarackObama, @BillGates, @justinbieber, @ Ari-
anaGrande, @TheEllenShow, @ YouTube, @KimKardashian,
@cnnbrk, @twitter, and @TheDailyShow. The aim is to see
whether Trumps style is easily distinguishable and whether
our tweet generator can fool the classifier. The dictionary is
compilied from all lower-cased words that appear in more
than 5 tweets. The final dictionary size was 4529 words.
We trained the classifier according to the update rule outline
in sec with a 10% validation partition. The resulting
accuracy was 0.79%. Table || shows the confusion matrix of
the classifier’s performance measured on the validation set.
We find a precision of 80% and a recall of 73%

| predicted T predicted F
True 948 340
False 223 1223
TABLE 1

CONFUSION MATRIX

Letting the classifier predict the author of our generate
tweets, we find it labels 85% of our tweets as President
Trump’s. A most indicative word analysis further reveals that
“respected”, “socalled”, “corrupt”, “ratings”, “@seanhannity”
“strongly”, “badly”, and “@foxandfriends” are most

characteristic for his tweeting style.

Finally, we devised a Turing test to see whether our friends
would be fooled by the tweet generator. We asked 5 people
to label 50 tweets each, the results are shown in table The
precision lies at 58% and the recall is at 43%, suggesting
that people can still distinguish between generated and real
tweets wit ah higher precision than the classifier. However a
significant amount, 35% to be exact, of our generated tweets
are labelled as real by humans.

| predicted T predicted F

True 74 26
False 53 97
TABLE 11

TURING TEST

VI. CONCLUSION/FUTURE WORK

We performed a full analysis the tweeting style of Twitter
user @realDonaldTrump. First, the statistical word frequency
analysis showed as expected the predominant usage of
terms related to a public office and a significant usage of
phrases people have come to associate with President Trump’s
tweets.The sentiment analysis further confirmed his polarizing
writing style and content. Next, we trained a classifier to
distinguish his tweets among other randomly samples ones.
The Naive Bayes’ classifier had no trouble fitting to words
in the vocabulary that were most relevant to his content. We
could challenge these results but training on tweets by other

republican politicians or supporters. Since the vocabulary
would then be more homogeneous and the same content
would be shared across positive and negative samples, we
predict that the Naive Bayes’ classifier would fail to fit. The
Naive Bayes’ assumption would break down as individual
words would no longer characterize tweet authors. Then,
we attempted to generate our own tweets mimicking the
President’s dialect with a LSTM-RNN and got an accuracy
of 0.64. Our generator fooled the classifier well, but a Turing
test revealed that humans would only accept 34% of our
tweets. As our coherence metric lies at 54%, only 18% of
our tweets are actually competitive. A principal component
analysis of the embedding matrix showed interesting results
in projecting terms relating to the election to the space in
between words referring to a public office and words referring
to news. The main benefit of the model architecture we used
for tweets generation was its simplicity, which allowed us
to iterate faster. However, its main drawback is that about
half of the generated texts are still nonsensical or at least
grammatically flawed. A really fun extension of this work
would be attempting to train a Transformer model for this task.

Even though President Trump has his social media director
Dan Scavino writing out some of his hot, medium, and mild
tweets, the common grammatical and spelling errors his ac-
count is often mocked seem to be a crucial part of their appeal
and success. His staff argues that “his unvarnished writing,
poor punctuation and increasing profanity on Twitter signals
authenticity.” Well, at least we know it’s distinguishable.

REFERENCES

[1] P. Bojanowski, A. Joulin, and T. Mikolov, “Alternative structures
for character-level rnns,” CoRR, vol. abs/1511.06303, 2015. [Online].
Available: http://arxiv.org/abs/1511.06303

[2] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” 2014.

[3] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013.

[4] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” arXiv
preprint arXiv:1802.05365, 2018.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998-6008.

[6] C. Zacharias, “TWINT - Twitter Intelligence Tool,” 2018.

[71 C. Hutto, “VADER - Valence Aware Dictionary and sEntiment
Reasoner,” 2016. [Online]. Available: |https://github.com/cjhutto/
vaderSentiment

[8] K. McKeown, Text generation. Cambridge University Press, 1992.

[91 D. M. Montesinos, “Modern methods for text generation,” 2020.

[10] D. Pawade, A. Sakhapara, M. Jain, N. Jain, and K. Gada, “Story
scrambler-automatic text generation using word level rnn-Istm,” In-
ternational Journal of Information Technology and Computer Science
(JITCS), vol. 10, no. 6, pp. 44-53, 2018.

http://arxiv.org/abs/1511.06303
https://github.com/cjhutto/vaderSentiment
https://github.com/cjhutto/vaderSentiment

	Introduction
	Related work
	Dataset and Features
	 Methods
	Tweet generation
	Principal Component Analysis
	Naive Bayes' classifier

	Experiments/Results/Discussion
	Conclusion/Future Work
	References

