Graph Convolutional Networks for Friend
Recommendation

Albert Pun
Department of Computer Science
Stanford University
apun@stanford.edu

Abstract

As more ethical concerns emerge about the use of user data by social networks, it
is ever more important to respect user’s privacy. However, many recommendations
algorithms for ads and friends often exploit user data. In this study, we were able to
do link prediction on a social graph with only unsupervised features between nodes.
We passed these features into a graph convolutional neural network to get node
embeddings and inputted in pairs of node embeddings to a full connected network
to receive link predictions. We were able to achieve a competitive mAP@ 10 of
67% without using any user data other than their current friends.

1 Introduction

As social networks like Facebook and Twitter have grown at an exponential rate in the last several
years, it has become ever more important for these platforms to help users find the friends they know
in real life. To do this, these social networks need to understand which users are most likely to be
connected to another user. Often, recommendation algorithms usually use the user’s attributes and
other links in the entire social graph to make an accurate prediction. However, in our research, we
want to find out if graph convolutional neural networks can perform accurate link prediction based
solely on other existing links without any user attributes. The inputs to our network are the features
derived from links for each node along with adjacency matrix that represents the connections between
nodes. The adjacency matrix has some links removed, and the network must output a list of link
predictions that it predicts exists in the graph.

With the growing concern of social networks abusing user data, this network can offer competitive
link prediction without the need to read user data. This will become even more applicable as more
countries like Europe and the U.S. passes more laws that restrict the use of user data.

2 Related work

Understanding social relationships in a social graph with recommendation algorithms has attracted
significant attention in recent years [1, 2, 3]. All of these algorithms share a key assumptions that a
user’s new relationships are similar to the people around them.

With friend recommendations, there are two classical approaches: a topology-based approach and
a content-based approach. With topology-based approaches, the models uses properties from the
network structure and calculates similarities between nodes. The algorithm will then compare a target
node with every other node and output the node with the highest similarity score. The two most
well-known node-to-node similarities metrics is Jaccard [4] and SimRank [5]. There are other metrics,

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

o o
o, o o o o
Srel & ee DO en.
s ° s
o O“° O p 060,00
e o o . 0 oo
o o o
a [° O . o
oty . o o %6 a
B o 00 o °° s e ©
- o o a
o o OO o . e s o
o
s ° o o . 00 o, ° o °
o 2 0® 90, 0 %, °
& ° @ o} = o lof PR - o
o) o d s olaa o o
o A o5 o g
° o a . 5 a
o o o =220 o @
o o ° 5o
a ° %0 o o °
4 . o o 59 040 o @ °
2% o o o
070, s % e o
. . . o . oo o -
o a o
o 0, %0 ®:-. oS
o o Q a o °
B
a s o O ‘ s o
°
°
s o © o
[efo)e] o .
°
o 00 0% o oo -
e g @ e L
o o
o ° . S5 o o

Figure 1: A training example, where the large black node is the target node. We only keep nodes with
5 degrees away from the target node to create a mini graph, so it can fit into memory

such as Zhao et al’s P-Rank [6], which generalizes a version of structural similarities. Additionally
Leicht et al [7] proposed another similarity metric that can be understood as a weighted count of
the number of paths having possible length between two vertices. A content-based approach tries to
recommend new nodes by looking at the current nodes linked to the target node. The most popular
content-based approach is collaborative filtering, which is a method of making automatic predictions
about the interests of a user by collecting preferences from many users connected to the target node.

There are many different types of social network recommendation applications that vary in regards to
context, but are still relevant to look at. Lo et al [8] developed a topology-based model to predict
strengths of relationships by understanding real messages between users. Armentano et al [9] was
able to develop an unsupervised model using Twitter’s data to identify users who were a trusted
source by other users. Lastly, Yang et at [10] created a method to recommend friend requests that
results in the highest acceptance rates.

3 Dataset and Features

The data is from Facebook’s recruiting challenge on Kaggle [11] and contains a directed graph
of 1.86M nodes and 9.43M edges. Each directed edge represents the source user following the
destination user. The dataset only contains a single giant graph, but we need to split it into train, test,
and validation. We decided to use 10% of the nodes for validation, 10% for test, and the last 80% for
training.

Due to the large size of the network and the inability to fit all the data into memory, we had to come
up with a way to do create training examples that fit in memory while still being representative of the
original data. To do this, we created a mini-graph for each training example by sampling a target
node from the entire graph and only keeping nodes within 5 degrees away from each target node to
create a mini graph. For each training example, all link predictions were done relative to the target
node. Figure 1 shows an example of a mini-graph with the target node.

To create the supervised problem, we removed a target node’s link with 20% probability. We have the
model try to predict the links that were removed.

To extract the initial features features that are inputted into the GCN, we used unsupervised features
that were shown to provide rich information about its neighbors. We don’t have any info about the

CN(u,v) =|T(u)NT(v) |
JC (u,v) = L0l

[(u)Ul(v)]
o 1
AA(w,v) = Y mmrn
wel(u)nl(v)
RA(u,v) = > |1“{1u}

wel'(u)nl(v)
PA(u,v) =[T(u) | x| (v) |

N Q(Gd be)
(u)

N " | (e ()l
ND(u,v) = ORI

TN(u,v) = T'(u) Ul'(v)|

UD =|T'(u) |
VD=|T(v |
, if u and v belong to the same community
SC(u,v) . :
otherwise

Figure 2: We used unsupervised features

actual node, so we use unsupervised methods based on Kolja Esders’s work in [12]. The following
features will be included in our prediction task: Common Neighbors (CN),Jaccard Coefficient (JC),
Adamic-Adar index (AA), Resource Allocation (RA), Preferential Attachment (PA), Adjusted-Rand
(AR) and Neighborhood Distance (ND) which are all local indices to which we will add the Total
Neighbors (TN), Node Degree (UD et VD) and Same Community (SC) features. They are all defined
in figure 2, where u is a non-target node, and v is a the target node.

4 Methods

We used a graph convolutional neural network to take the unsupervised features to output higher
dimensional embeddings and using neighboring node’s information. GCNSs are in some ways are
similar to a normal convolutional neural network. They perform similar operations where the model
learns the features by inspecting neighboring nodes. The major conceptual difference between CNNs
and GNN:ss is that CNNs are designed to work well on image data, where each pixel has neighboring
pixels while GNNs are the generalized version of CNNs where the numbers of nodes connections
vary.

The formula for each layer of the GCN is

XU = ReLU(AX'W?) (1)

where each row of X represents the a node and its features. To create the original inputted feature

vector for each non-target node, we used the equations from figure 3. A is a normalized version of
the adjacency matrix with also the addition of the identity matrix.

By multiplying the A with X, the output node embeddings have information from its neighbors. It
is important to note that every node is connect to itself in A so that the resulting embeddings have
information about itself. Another vital detail is that each row of A is normalized so that nodes with
large number of links do not grow too large and explode.

Hidden layer Hidden layer

Output

Figure 3: This figure illustrates how the purple node receives information from its neighbors in each
layer. With multiple of these layers, the outputted embedding contain rich information from nodes
many degrees away

After we use the GCN to find rich embeddings of each node, we then pass in pairs of node embeddings
to a second full connected network that outputted the probability that the link existed in the original
graph.

We used a cross entropy loss because the problem reduces down to a binary classification problem for
each possible link in the graph. Due to the edges being directed, we needed to pass in each pair of
nodes twice in reversed order.

N
BOE =~ 3" i log(p(yi)) + (1~ o) = log(1 — pls) @)
=1

S Experiments/Results/Discussion

The evaluation metric for this competition is Mean Average Precision @ 10 as specified by the Kaggle
challenge [11]

For example, if there are m missing edges from the target node in the graph, and you can predict up
to 10 other nodes that the user is likely to follow. We can adapt the definition of average precision in
information retrieval, where it is equal to

mAPQn = z”: P(k)

3)

min(m, 10)

if the denominator is zero, the result is set zero. The numerator, P(k), is the precision at cut-off k
in the item list. In other words, the ratio of number of users followed up to the position k over the
number k, and P(k) equals O when k -th item is not followed upon recommendation. We chose n=10
because this was the way Facebook defined the evaluation metric for the Kaggle challenge.

We chose to use 4 layer GCN after trying 1 to 6 layers shown in Table 1. It is surprising to see that a
GCN with just one layer is able to have decent performance, and that the performance increase for the
addition of each layer caps out at around 4 layers, which is quite shallow when compared to CNNSs.

We had to use a small mini batch size of 8 because our graph data took large amounts of memory
despite our strategy of breaking it up as discussed in the Data and Features section.

GCN Layers 1 2 3 4 5 6
mAP@10 | 0.58 | 0.62 | 0.66 | 0.67 | 0.66 | 0.67

Table 1: We tried varying number of layers in our GCN network that produced the highest mAP@10

class Predicted Yes Predicted No
Actual Yes 76% 24%
Actual No 46% 54%

Table 2: The confusion matrix for our model

Total Edges | 1-10 | 10-100 | 100+
mAP@10 | 0.55 0.69 0.71

Table 3: We bin each training example based on the number of edges a target nodes has.

For our model that received the input and outputted the link prediction, we chose to use a 3 fully
connected layer model to do the classification because we wanted to train the network end to end in
Tensorflow [13].

We also used L2 regularization along with dropout for all training to reduce overfitting. Our training
accuracy was 72% while our test accuracy was 67%, which means that are model was still overfitting
to some degree despite our regularization techniques.

Our results show that just by using unsupervised features we can score a 67% ap@10, which are
competitive results to other methods that achieved 74% [1] even though we do not use any user
attributes.

We found that the algorithm performed poorly when the target node had few connections as shown in
Table 3. This is most likely due to the fact that there were less neighbors to learn from, making it
harder

6 Conclusion/Future Work

Our research has shown that by just using unsupervised features to do link prediction on social graphs
using GCNs, we can achieve competitive results to other studies that utilize user attributes. The
message passing in GCNs has shown to create rich embeddings that can be used by a FCN to do link
prediction between pairs of nodes.

In the future, other teams could investigate how to produce link predictions over an entire graph of
each node without needing to individually input pairs to the fully connected layer for a specific target
node. This would drastically increase the speed of the network during inference time.

Future work can also be done on using different features for the initial input to the GCN.

Teams with larger computing power can also try to input larger training examples to see if it improves
performance. In our case, we could only use nodes 5 degrees away from target nodes because it took
too much memory. By distributing the data over hundreds of GPUs, it may even be possible to run
the whole 10m node graph in one pass to get better results.

7 Contributions

Albert Pun worked independently on this project.

8 Code

https://github.com/AlbertPun/cs230project

References

[1] Jiliang Tang, Charu Aggarwal, and Huan Liu. 2016. Recommendations in signed social networks. In Pro-
ceedings of the 25th International Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 31-40.

[2] Jiliang Tang, Xia Hu, Huiji Gao, and Huan Liu. 2013. Exploiting local and global social context for
recommendation.. In IJCAI, Vol. 13. 2712-2718.

[3] Bo Yang, Yu Lei, Jiming Liu, and Wenjie Li. 2017. Social collaborative filtering by trust. IEEE transactions
on pattern analysis and machine intelligence 39, 8 (2017), 1633-1647.

[4] G. Salton and M. J. McGill, “Introduction to modern information retrieval,” 1983.

[5] G. Jeh and J. Widom, “SimRank: a measure of structural-context similarity,” in Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2002, pp. 538-543.

[6] P. Zhao, J. Han, and Y. Sun, “P-Rank: a comprehensive structural similarity measure over information
networks,” in Proceedings of the 18th ACM conference on Information and knowledge management. ACM,
2009, pp. 553-562.

[7] E. Leicht, P. Holme, and M. E. Newman, “Vertex similarity in networks,” SIAM Journal on Numerical
Analysis, vol. 45, no. 2, pp. 890- 904, 2006

[8] S. Lo and C. Lin, “WMR-a graph-based algorithm for friend recommendation,” in Proceedings of the 2006
IEEE/WIC/ACM International Conference on Web Intelligence. IEEE Computer Society, 2006, pp. 121-128.

[9] M. G. Armentano, D. Godoy, and A. Amandi, “Topology-based recommendation of users in micro-blogging
communities,” Journal of Computer Science and Technology, vol. 27, no. 3, pp. 624-634, 2012.

[10] D.-N. Yang, H.-J. Hung, W.-C. Lee, and W. Chen, “Maximizing acceptance probability for active friending
in online social networks,” in Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2013, pp. 713-721.

[11] Facebook, "Facebook Recruiting Competition," Kaggle, https://www.kaggle.com/c/FacebookRecruiting/data

[12] Kolja Esders, (2015). Link Prediction in Large-scale Complex Networks. Bachelor’s Thesis at the Karlsruhe
Institute of Technology

[13] M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015, software
available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

	Introduction
	Related work
	Dataset and Features
	 Methods
	Experiments/Results/Discussion
	Conclusion/Future Work
	Contributions
	Code

