
Identifying differential
expression of neural
circuitry using deep
learning techniques
Jennifer Owens: jenowens Colton Swingle: cswingle

Abstract
Our project explores the differential expression of brain cells in ​Drosophila Melanogaster​, a
species of fruit fly. It is valuable for researchers to be able to identify a cell based on its gene
expression patterns in order to better understand the relationship between gene expression
levels and differential cell development in fruit flies. By developing a successful predictive
model, we hope to not only provide scientists with a means to identify cells that can already be
identified via other means using solely their gene expression matrices, but also to use gene
expression matrices of yet-unidentified cells to understand their likely function in the ​Drosophila
brain, as per their predicted circuit classification. To achieve this goal, we developed a fully
connected deep neural network to predict a ​Drosophila​ brain cell’s cell type from its gene
expression patterns. Our model achieved an overall accuracy of 0.868 and an average F1-score
of 0.791.

Introduction
The input to our algorithm is a gene expression matrix, which consists of the gene expression
levels for approximately 17,000 fruit fly genes for a single cell. We then use a deep neural
network to predict the cell’s type from its gene expression matrix. There are 59 types of
neuronal cells in our dataset.

Related Work
Single-cell RNA sequencing is a powerful genetic sequencing technique developed by Tang et
al. in 2009.​1​ The technique allows biologists to measure the gene expression levels at the
single-cell level, providing much more detailed and granular gene expression analysis than
previous techniques. Our dataset comes from a paper called “A Single-Cell Transcriptome Atlas
of the Aging Drosophila Brain” that leverages this technique to develop a detailed dataset on
tens of thousands of brain cells of gene expression matrices for over 20,000 brain cells.​2​ There
are several key papers that explore the relationship between gene expression and phenotype in
cells. Chen et al.’s 2015 paper “Gene expression inference with deep learning” predicts
expression of target genes based on known expressions of landmark genes,​3​ and Guia et al.’s
2020 paper “DeepGx: Deep Learning Using Gene Expression for Cancer Classification”
explores how to identify cell’s cancer type based on their gene expression matrices.​4​ While the
methods used in these papers are not directly applicable to our dataset, they served as a useful
reference and guide as we developed our architecture.

Dataset
Our dataset comes from the Stein Aerts Lab. They have performed single-cell RNA sequencing
on the entire ​Drosophila​ brain, in order to create a ​Drosophila​ brain cell atlas.

Our dataset consists of 20,679 examples, each of which consists of a gene expression matrix
for a single cell and the corresponding cell type. We used a 70-15-15 train/val/test split.

The data we downloaded from the lab was initially split into multiple files and was not very
interpretable. The given features for gene expression were sparse and ranged from a majority of
0.0 up to 26,000. The targets were simply the name of the cell type that the gene expressions

encoded for. In order for our model to learn, we first log transformed our features. We then used
min-max standardization to normalize our data so it would range from 0 to 1. This normalization
was fitted to our training data split and was reused to transform our validation and test data. We
found that this technique greatly improved the model’s ability to learn mapping from features to
targets. In addition, we found every unique class of our targets and encoded them into integer
classes to allow for one-hot encodings and faster load time.

In order to clean our initial dataset, we built a customizable script to sanitize it and produce
model quality data. The script removed unknown cell types that the authors could not identify,
and allowed us to remove targets that had support insufficient for a specified threshold. For this
study, we disincluded classes with less than 50 examples because most of our classes had
more than 500 examples and smaller classes provided little information for the model. The
ability to clean the data and define with examples to keep allowed us greater flexibility in training
the model and defining which cell types we were most confident in predicting.

Methods

Model Architecture
For our architecture, we chose a fully connected network, which we felt would be most
appropriate for this task. While some studies on gene expression patterns rely on 1D
convolutional networks, the features in our dataset (gene expressions) were sorted
alphabetically and thus had no spatial relation to one another. The dimensionality of our input
features was also large enough that we could not develop a human-interpretable understanding
of the features from simple analysis. Thus, we decided the fully-connected model would be best
for this task so that the model would be able to build increasingly sophisticated features from a
relatively simple input that lacked a clear underlying structure. In addition, we learned very
quickly that our model performed much better with usage of batch normalization--thus we
included it in every layer except for the output. Dropout and L2 normalization was used to
regularize the model but showed little effect in our final testing. Overall, our fully connected
architecture performed above our expectations. With continued testing, we could try to group
similar features together (either based on machine learning analyses or by mapping each
gene’s name to its location on the genome) in order to apply a convolutional layer before our
fully connected layers to allow for spatial recognition and a decreased number of parameters for
the model to tune. However, with 17,000 features, it was not realistic to perform this type of
preprocessing given the timeline of the project.

Loss function and Optimizer
We used a cross-entropy loss function (which applies a log softmax and then calculates
cross-entropy) and an Adam optimizer with L2 regularization.

Hyperparameters
We performed a large hyperparameter search in order to find good hyperparameters for testing.
The search was conducted over the model learning rate, weight decay lambda value, number of
hidden layers, number of hidden units, mini-batch size, and dropout rate. For these

hyperparameters, we defined values that we could possibly use to tune, and randomly sampled
from that distribution to train for 15 epochs. We optimized for the average validation accuracy
score to find our best hyperparameters. Given our testing, we used our optimal
hyperparameters to perform final testing on our test datasets.

Experiments/Results/Discussion
Our best hyperparameters were as follows:

Number of hidden layers​: 2
Number of hidden units​: 8192
Learning rate:​ 1e-6
Weight decay​: 1e-3
Dropout​: 0.2

We chose the hyperparameters that led to the best performance on the validation set, as
measured by overall accuracy. The test set metrics are as described in the table below.
“Average” for these metrics indicates the unweighted average across all classes for the given
metric.

Test Metrics on Baseline and Final Model

*Note: The identical values for overall accuracy and average precision, and for average accuracy and
average recall, appear to be coincidental. None of our other runs had this outcome.

Although the improvement from our baseline (original) model was not very large, we still did see
more consistent results across classes in the final model. There were many models trained
during hyperparameter tuning with very poor performance--suggesting that the small
improvement from the baseline model is due to good guesses for original hyperparameters
rather than underlying issues with the model.We also visualized our results using a confusion
matrix and a chart of per-class F1 scores, shown below:

Confusion Matrix

 Overall
Accuracy

Average
Accuracy

Average
Precision

Average
Recall

Average
F1
Score

Average
Area
under
ROC

Average
Area
under
PRC

Baseline 0.867 0.797 0.828 0.797 0.804 0.897 0.695

Final 0.868 0.763 0.868 0.763 0.791 0.881 0.684

The model performed extremely well on almost every class, as shown by the strong diagonal
line in the confusion matrix and in the height of the bars in the chart depicting per-class F1
scores above. Nearly all of the classes in the test set achieved an F1 score of at least 0.7. More
specifically, the minimum, first quartile, median, third quartile, and maximum F1 scores among
the classes were 0.235, 0.714, 0.871, 0.942, and 1.0. The distribution for per-class accuracy
was similar: 0.167, 0.686, 0.844, 0.947, and 1.0. We did not find a clear pattern for why a
handful of classes got an F1 score of 0.2-0.3. All three of these low-performing classes had
fewer examples than the typical class, so this is likely due at least in part to class imbalance,

however, many classes that were similarly small had very high F1 scores. More investigation
into the nature of these cells from a scientific perspective may provide insight as to why these
cells were more difficult to identify.
The loss curves for the model trained using the best hyperparameters are below.

As shown by the loss curves, the model trained quite smoothly for the over the thirty training
epochs. While validation loss is higher than the training loss, it is still decreasing at the end of
training, suggesting that the model is not overfitting.

Conclusions/Future Work

While our model performed much better than expected, there is still room for improvement.
Future experiments could encode spatial information in the gene expression matrix by putting
adjacent genes next to each other in the matrix, allowing for the use of 1D convolutions, or
utilize data augmentation to reduce class imbalance. Future experiments could also explore
model interpretability to make the results more generalizable to future scientific research.

Contributions
Jen did data exploration and initial preprocessing, incorporating metrics into model, analysis,
and final report.
Colton did model architecture implementation, hyperparameter tuning, and final video slides.
References

1. https://www-nature-com.stanford.idm.oclc.org/articles/nmeth.1315
2. https://www-sciencedirect-com.stanford.idm.oclc.org/science/article/pii/S0092867418307

207?via%3Dihub

https://www-nature-com.stanford.idm.oclc.org/articles/nmeth.1315
https://www-sciencedirect-com.stanford.idm.oclc.org/science/article/pii/S0092867418307207?via%3Dihub
https://www-sciencedirect-com.stanford.idm.oclc.org/science/article/pii/S0092867418307207?via%3Dihub

3. https://www.biorxiv.org/content/10.1101/034421v1.full.pdf
4. https://ieeexplore-ieee-org.stanford.idm.oclc.org/abstract/document/9073128

https://www.biorxiv.org/content/10.1101/034421v1.full.pdf

