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Abstract 
Our project explores the differential expression of brain cells in ​Drosophila Melanogaster​, a 
species of fruit fly. It is valuable for researchers to be able to identify a cell based on its gene 
expression patterns in order to better understand the relationship between gene expression 
levels and differential cell development in fruit flies. By developing a successful predictive 
model, we hope to not only provide scientists with a means to identify cells that can already be 
identified via other means using solely their gene expression matrices, but also to use gene 
expression matrices of yet-unidentified cells to understand their likely function in the ​Drosophila 
brain, as per their predicted circuit classification. To achieve this goal, we developed a fully 
connected deep neural network to predict a ​Drosophila​ brain cell’s cell type from its gene 
expression patterns. Our model achieved an overall accuracy of 0.868 and an average F1-score 
of 0.791. 
 
Introduction 
The input to our algorithm is a gene expression matrix, which consists of the gene expression 
levels for approximately 17,000 fruit fly genes for a single cell. We then use a deep neural 
network to predict the cell’s type from its gene expression matrix. There are 59 types of 
neuronal cells in our dataset. 
 
Related Work 
Single-cell RNA sequencing is a powerful genetic sequencing technique developed by Tang et 
al. in 2009.​1​ The technique allows biologists to measure the gene expression levels at the 
single-cell level, providing much more detailed and granular gene expression analysis than 
previous techniques. Our dataset comes from a paper called “A Single-Cell Transcriptome Atlas 
of the Aging Drosophila Brain” that leverages this technique to develop a detailed dataset on 
tens of thousands of brain cells of gene expression matrices for over 20,000 brain cells.​2​  There 
are several key papers that explore the relationship between gene expression and phenotype in 
cells. Chen et al.’s 2015 paper “Gene expression inference with deep learning” predicts 
expression of target genes based on known expressions of landmark genes,​3​ and Guia et al.’s 
2020 paper “DeepGx: Deep Learning Using Gene Expression for Cancer Classification” 
explores how to identify cell’s cancer type based on their gene expression matrices.​4​ While the 
methods used in these papers are not directly applicable to our dataset, they served as a useful 
reference and guide as we developed our architecture. 
 
Dataset 
Our dataset comes from the Stein Aerts Lab. They have performed single-cell RNA sequencing 
on the entire ​Drosophila​ brain, in order to create a ​Drosophila​ brain cell atlas. 
 
Our dataset consists of 20,679 examples, each of which consists of a gene expression matrix 
for a single cell and the corresponding cell type. We used a 70-15-15 train/val/test split.  
 
The data we downloaded from the lab was initially split into multiple files and was not very 
interpretable. The given features for gene expression were sparse and ranged from a majority of 
0.0 up to 26,000. The targets were simply the name of the cell type that the gene expressions 



encoded for. In order for our model to learn, we first log transformed our features. We then used 
min-max standardization to normalize our data so it would range from 0 to 1. This normalization 
was fitted to our training data split and was reused to transform our validation and test data. We 
found that this technique greatly improved the model’s ability to learn mapping from features to 
targets. In addition, we found every unique class of our targets and encoded them into integer 
classes to allow for one-hot encodings and faster load time. 
 
In order to clean our initial dataset, we built a customizable script to sanitize it and produce 
model quality data. The script removed unknown cell types that the authors could not identify, 
and allowed us to remove targets that had support insufficient for a specified threshold. For this 
study, we disincluded classes with less than 50 examples because most of our classes had 
more than 500 examples and smaller classes provided little information for the model. The 
ability to clean the data and define with examples to keep allowed us greater flexibility in training 
the model and defining which cell types we were most confident in predicting. 
 
Methods  
 
Model Architecture 
For our architecture, we chose a fully connected network, which we felt would be most 
appropriate for this task. While some studies on gene expression patterns rely on 1D 
convolutional networks, the features in our dataset (gene expressions) were sorted 
alphabetically and thus had no spatial relation to one another. The dimensionality of our input 
features was also large enough that we could not develop a human-interpretable understanding 
of the features from simple analysis. Thus, we decided the fully-connected model would be best 
for this task so that the model would be able to build increasingly sophisticated features from a 
relatively simple input that lacked a clear underlying structure. In addition, we learned very 
quickly that our model performed much better with usage of batch normalization--thus we 
included it in every layer except for the output. Dropout and L2 normalization was used to 
regularize the model but showed little effect in our final testing. Overall, our fully connected 
architecture performed above our expectations. With continued testing, we could try to group 
similar features together (either based on machine learning analyses or by mapping each 
gene’s name to its location on the genome) in order to apply a convolutional layer before our 
fully connected layers to allow for spatial recognition and a decreased number of parameters for 
the model to tune. However, with 17,000 features, it was not realistic to perform this type of 
preprocessing given the timeline of the project. 
 
Loss function and Optimizer 
We used a cross-entropy loss function (which applies a log softmax and then calculates 
cross-entropy)  and an Adam optimizer with L2 regularization. 
 
Hyperparameters 
We performed a large hyperparameter search in order to find good hyperparameters for testing. 
The search was conducted over the model learning rate, weight decay lambda value, number of 
hidden layers, number of hidden units, mini-batch size, and dropout rate. For these 



hyperparameters, we defined values that we could possibly use to tune, and randomly sampled 
from that distribution to train for 15 epochs. We optimized for the average validation accuracy 
score to find our best hyperparameters. Given our testing, we used our optimal 
hyperparameters to perform final testing on our test datasets.  
 
Experiments/Results/Discussion 
Our best hyperparameters were as follows: 

Number of hidden layers​: 2 
Number of hidden units​: 8192 
Learning rate:​ 1e-6 
Weight decay​: 1e-3 
Dropout​: 0.2 

We chose the hyperparameters that led to the best performance on the validation set, as 
measured by overall accuracy. The test set metrics are as described in the table below. 
“Average” for these metrics indicates the unweighted average across all classes for the given 
metric. 
 

Test Metrics on Baseline and Final Model 

*Note: The identical values for overall accuracy and average precision, and for average accuracy and 
average recall, appear to be coincidental. None of our other runs had this outcome. 
 
Although the improvement from our baseline (original) model was not very large, we still did see 
more consistent results across classes in the final model. There were many models trained 
during hyperparameter tuning with very poor performance--suggesting that the small 
improvement from the baseline model is due to good guesses for original hyperparameters 
rather than underlying issues with the model.We also visualized our results using a confusion 
matrix and a chart of per-class F1 scores, shown below: 
 
Confusion Matrix 

 Overall 
Accuracy 

Average 
Accuracy 

Average 
Precision 

Average 
Recall 

Average 
F1 
Score 

Average 
Area 
under 
ROC 

Average 
Area 
under 
PRC 

Baseline 0.867 0.797 0.828 0.797 0.804 0.897 0.695 

Final 0.868 0.763 0.868 0.763 0.791 0.881 0.684 



 

 
 
 
The model performed extremely well on almost every class, as shown by the strong diagonal 
line in the confusion matrix and in the height of the bars in the chart depicting per-class F1 
scores above. Nearly all of the classes in the test set achieved an F1 score of at least 0.7. More 
specifically, the minimum, first quartile, median, third quartile, and maximum F1 scores among 
the classes were 0.235, 0.714, 0.871, 0.942, and 1.0. The distribution for per-class accuracy 
was similar: 0.167, 0.686, 0.844, 0.947, and 1.0. We did not find a clear pattern for why a 
handful of classes got an F1 score of 0.2-0.3. All three of these low-performing classes had 
fewer examples than the typical class, so this is likely due at least in part to class imbalance, 



however, many classes that were similarly small had very high F1 scores. More investigation 
into the nature of these cells from a scientific perspective may provide insight as to why these 
cells were more difficult to identify. 
The loss curves for the model trained using the best hyperparameters are below. 

 
As shown by the loss curves, the model trained quite smoothly for the over the thirty training 
epochs. While validation loss is higher than the training loss, it is still decreasing at the end of 
training, suggesting that the model is not overfitting.  
 
Conclusions/Future Work 
 
While our model performed much better than expected, there is still room for improvement. 
Future experiments could encode spatial information in the gene expression matrix by putting 
adjacent genes next to each other in the matrix, allowing for the use of 1D convolutions, or 
utilize data augmentation to reduce class imbalance. Future experiments could also explore 
model interpretability to make the results more generalizable to future scientific research. 
 
Contributions 
Jen did data exploration and initial preprocessing, incorporating metrics into model, analysis, 
and final report. 
Colton did model architecture implementation, hyperparameter tuning, and final video slides. 
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