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Abstract

Falls are the leading cause of fatal and nonfatal injuries among the elderly. [1] In
order to help alleviate this health crisis, we introduce FallDetectNet, a computer
vision model that detects falls in real time using images obtained from depth sensors.
Our approach incorporates convolutional neural networks, data augmentation, and
transfer learning in order to classify whether depth sensor images represent a fall
or not. Using transfer learning, we were able to achieve an accuracy of 99% and a
recall score of 99% on the test set.

1 Introduction

According to the U.S. Centers for Disease Control, over 2.8 million adults over the age of 65 are
injured in a fall annually, leading to approximately 800,000 hospitalizations and 27,000 deaths. [1]
Falls exponentially increase with age-related biological changes, leading to a high occurrence of
fall-related injuries in aging societies. The number of injuries caused by falls is projected to increase
by 100% in 2030. [2] Thus, early detection of falls in a manner that respects people’s privacy would
be helpful in mitigating falls’ negative health consequences. In this project, we input depth images
into a convolutional neural network to output a prediction of whether a fall occurred in the image.

2 Related Work

The fall detection task is normally done by hand; namely by passersby who happen to see an injured
elderly person. Research has been done on more automatic and continuous ways of detect falls. One
set of approaches involves inputting hand-crafted features into machine learning classifiers. One
approach used features from RBG (color) images such as the ratio of the height and width of the
bounding box drawn around a person. A k-nearest neighbors classifier was used and achieved an
accuracy of 84.44%. [3] Similarly, another group used accelerometer and gyroscope data to calculate
features such as the range of angular velocity and a support vector machine classifier that achieved
a specificity of 99.5% and sensitivity of 97%. [4] Although the ingenuity involved in devising
hand-crafted features is admirable and these models perform well compared to others when data is
scarce, it is difficult for hand-crafted features to generalize to all types of falls. [4] The above methods
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are different algorithmically but share our concern for privacy. Part of the reason hand-crafted features
were used was to use the data in a way that removed identifiable features. [3]

Another category of approaches, convolutional neural networks (CNNs), are state-of-the-art because
they do not require expensively hand-crafting features and achieve high accuracies. But, their
performance is limited by the amount of data available. Some CNN models share similarities but use
different data sources than ours. One group also used transfer learning. They input accelerometric
data into an AlexNet architecture that was pretrained on the ImageNet dataset. It achieved an accuracy
of 96.43% and precision of 95.83%. [5] Another group modified an AlexNet and took RBG images
as input, achieving an accuracy of 99.98%. [6] Although these methods achieved high accuracies,
the data they rely on might not be as usable as depth data. The accelerometers and gyroscopes have
to be worn by a person, which can be inconvenient. It is difficult to preserve patient privacy in the
RBG images. An additional group used depth data like we did, though they used videos and thus a
3D-CNN. Though videos can ostensibly be more accurate in gauging whether a fall occurred, as it
relies on multiple frames rather than a single one and usually uses more complex models [7], this may
make it slower to detect a fall. Also, fewer fall detection videos are available than images. This group
overcame this obstacle by using data augmentation, increasing the model accuracy from 69.6% to
92.4%. [8] In this work, we hope to use a source of data that was not used in the literature, individual
depth images, but that seems to have privacy and speed advantages. We will use a combination of the
techniques mentioned here: CNNs, transfer learning, and data augmentation.

3 Dataset

The primary data we used are depth images from the UR Fall Detection Dataset (Figure 1). [9]
Depth images contain information about the distance of objects from a camera. They help to preserve
privacy since it is difficult to identify people from them. We used 4013 depth images from the UR
Fall Detection Dataset for training and 1977 for testing. They contains images obtained from two
Microsoft Kinect cameras at different angles for 30 distinct falls. Each fall has about 150 labeled
frames. The image format is PNG16; the image has dimensions 480x640x3. Each frame is labeled as
follows: -1 for not a fall, 1 for a fall and 0 for a temporary pose (the person is about to fall).

(a) Fall (b) Not a fall

Figure 1: Examples of data from the UR Fall Detection Dataset

3.1 Data pre-processing

To pre-process the data, we first downloaded all of the fall and not-fall images. We then applied
min-max normalization and resized the images to the shape (224, 224, 3), which is required to use
the VGG-16 model with top layers removed.

4 Methods

4.1 Convolution Neural Network

We trained a simple CNN on all of our data. We chose a CNN because these networks are commonly
used for image classification tasks as the convolutional layers extract feature maps from images that
can help with the final prediction task. We used two convolutional layers of size 64, then 32 with
filter sizes of 3 and a ReLU activation. We ended the model with a flatten layer and a dense fully
connected layer with a sigmoid activation.
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4.2 Data Augmentation

In order to increase the diversity in images of falls and not-falls our model sees, we implemented
data augmentation in our model using the "ImageDataGenerator" class in the Keras library to create
modified versions of our images. In each epoch of training, the generator returned unique transformed
versions of the original images in the dataset. After experimentation with multiple different rotation
arguments (10, 15, 30, 45, 60, 90), we decided to use a rotation argument of 15 for higher accuracy.
Each image was thus randomly rotated clockwise by a given number of degrees from 0 to 15. Through
a similar process of testing, we also controlled the range of horizontal and vertical shifts possible
with width shift and height shift arguments of 0.1. Refer to Appendix A for examples of transformed
images via data augmentation.

4.3 Transfer Learning

Since our CNN was overfitting, we decided to use transfer learning to help our model generalize
beyond our small training set and perform better on the test set. In transfer learning, layers of a model
trained on one task are used in a model intended for a similar task. The hope is that some of the
knowledge the old model used to complete its old task (as encoded in model weights) will be useful
on the new task. We pretrained a VGG-16 architecture on the ImageNet dataset to learn a feature
extractor. [10, 11] We chose this dataset and model because it generalizes well to other tasks and
has fewer parameters compared to other models, which can lead to faster training with less memory
usage. [12, 13] We replaced the VGG-16’s fully-connected layers with an average pooling layer and
dense layer with sigmoid activation. The remaining part of VGG-16 is comprised of five "blocks" of
convolutional layers followed by a pooling layer. We experimented with freezing different numbers
of blocks to improve model performance.

4.4 Hyperparameters

All of our models used the same hyperparameters, including the learning rate, number of filters in
convolutional layers, and number of training epochs. We used choices that performed well on related
work [12, 6] and chose to focus on varying the number of frozen layers in our transfer learning model.
Our loss function was binary cross entropy loss as shown in Equation 1.

Hp(q) = − 1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (1)

5 Results + Discussion

5.1 Evaluation Methods

To evaluate our model, we looked at accuracy, precision, and recall. As with most tasks related to
healthcare, the consequences of false negatives are much higher than those of false positives. Thus
we place particular emphasis on recall.

5.2 Convolution Neural Network

The baseline CNN model performed well with a training accuracy of 98.55% and a test accuracy of
93.77%. As shown in Figure 2b, the model had more false positives than false negatives, which is
good for our desired task. When we applied data augmentation to the model, it actually performed
worse. This is an indication that while our results on our initial dataset were good, our model is
probably not generalizable. See the appendix for examples of how the model performs on new
images.

Figure 3 shows the results of the CNN with data augmentation. The accuracy on the training set
was 98% and the accuracy on the test set was 73%. As Figure 3 shows, this model has the largest
difficulty distinguishing between actual falls and not falls, resulting in an incredibly low recall score
of 0.44. In short, we have many false negatives, but not too many false positives, which is not suitable
for this task. This is probably because there are more images that aren’t falls in the dataset. Therefore,
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Data aug No data aug
Train acc .7301 .9855
Test acc .7511 .9377
Precision .71 .91
Recall .44 .89
F1 .55 .90

(a) Metrics

(b) VGG-16 architecture

Figure 2: Evaluation of CNN with and without data augmentation

the model doesn’t make strong predictions in either direction and will default to not-fall more often
to attain a lower loss.

5.3 Transfer learning

Our reasons for choosing the transfer learning model we did are explained in the "Methods" section.
After seeing the poor performance of the transfer learning model when all of the layers were unfrozen,
we varied the number of blocks frozen. As shown in Figure 3, the best performance was achieved
when the first three or first four convolutional "blocks" were frozen. This intermediate number
of blocks seems to achieve a good balance: keeping the earlier layers frozen will maintain the
weights that are good at capturing more generic image features, which would assist with our image
classification problem. But if too many layers are frozen, then the model cannot adapt to our specific
fall detection dataset. The transfer learning model performed better than the original CNN, both
with and without data augmentation. Transfer learning may have helped the model generalize and
thus perform better on the test set (this is also supported by the smaller gap between training and
test dataset accuracies for the transfer learning model compared to the original CNN). As shown in
Figure 4b, the transfer learning model tended to misclassify not-falls as falls more than the reverse.
This could be due to the reason mentioned in the above section, namely that there are more not-fall
images in the dataset.

Data augmentation did not improve model performance; the train accuracy, test accuracy, precision,
recall, and F1 score were 0.9905, 0.9863, 0.98, 0.98, and 0.98, respectively. It could be that the
augmentations were not needed in this particular case. With respect to the training images, the test
dataset images were not rotated and were not vertically or horizontally shifted since they were taken
using the same camera in the same room.

Layers frozen Train acc Test acc Precision Recall F1
None .6935 .7086 0.00 0.00 0.00
1-3 (block 1 frozen) .6935 .7086 0.00 0.00 0.00
1-6 (blocks 1 and 2 frozen) .8139 .8260 0.86 0.48 0.62
1-10 (blocks 1,2,3 frozen) .9599 .9737 0.93 0.98 0.96
1-14 (blocks 1,2,3,4 frozen) .9858 .9863 .94 0.99 0.97
1-18 (all blocks frozen) .7907 .8154 0.82 0.51 0.63

Figure 3: Evaluation of transfer learning model with top results bolded

5.4 Error Analysis

As we can see in the receiver operating characteristic (ROC) curve in figure 4a, the transfer learning
model performed best with an area under the curve of 0.997. The CNN with data augmentation
performed worst with an area under the curve of 0.792. This plot shows that the transfer learning
approach was far superior in this case to the baseline CNN in identifying true positives.

Figure 5a shows an image that was misclassifed as a non-fall by the CNN with data augmentation.
We believe that the model is not robust enough to properly distinguish between classes in the presence
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(a) ROC Curve for selected models
(b) Confusion matrix for best transfer learning model

Figure 4: ROC curve for selected models and confusion matrix for best transfer learning model

of furniture. Figure 5b shows a false positive. Depth sensors naturally experience a lot of noise,
especially when there is a lot of movement and changes in lighting. In this example, we believe the
model predicted it was a fall because of the noise in the image coming from the black dots on the
floor, even though the person is clearly standing.

(a) False negative from CNN with data augmentation (b) False positive from CNN with no data augmentation

Figure 5: Examples of prediction errors

6 Conclusion + Future Work

We achieved a model with similar performance to the "Related Work" section’s with a more practical
source of data. Our transfer learning model, either with or without data augmentation, performed the
best. The baseline CNN model without data augmentation did not perform as well, though it still
achieved high evaluation metrics. The baseline CNN model without data augmentation performed
the worst. We think that the transfer learning model performed well because pretraining on another
dataset helped it generalize beyond the small training dataset. The baseline model did not perform
as well since it was only trained on the small UR Fall Detection dataset. A possible reason why the
baseline CNN with data augmentation performed the worst is that the depth images were already
noisy, and the modifications to the images could have made it even harder for the model to distinguish
between fall and not-fall images. If we had more time, we would address the large disparity between
precision and recall values that some of our models displayed. Since the disparity implies that the
model has a higher number of false negatives than false positives, we would address the problem by
creating a custom loss function that would strongly penalize false negatives. Furthermore, as the
results in the appendix and from data augmentation show, our model does not perform well when
given images outside of our initial dataset. To combat this, we would find new datasets for the same
task to create a more robust model.

7 Contributions

All group members contributed equally to the project. Ariel focused on transfer learning, Stephanie
focused on the CNN and Yanichka focused on the data augmentation.
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8 Code

Our code is available in our public Github repo linked here.

9 Appendix A

Figure 6: Examples of data augmentation transformations

10 Appendix B

To experiment with the generalizability of our models, we created our own data using an Xbox Kinect
sensor and Microsoft SDKs. Our model was unable to properly categorize these images, which
showed that our model is not as robust as it needs to be to fully function in the real world. These
samples also show how noisy depth sensor images can be in rooms with a lot of furniture/lighting.

(a) Fall image generated by our team (b) Non fall image generated by our team

Figure 7: Examples of prediction errors
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