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Abstract

Fast and accurate classification of traffic signs is going to play a crucial role
in autonomous driving, mapping/navigation, and traffic safety. Although this
topic has garnered much attention in the computer vision research community, it
remains a tricky challenge owing to perception difficulties due to variations in
viewpoint and lighting conditions, motion-blur, physical blocking, and low-quality
image [1]. Previous work relies on manually fine-tuning multiple parameters such
as brightness and contrast. In this paper, we propose a novel combination of
AutoAugment and Spatial Transformer Networks that performs better across a
wide range of illumination and other real-world variables. This method automates
the data augmentation process and achieves 99.86% validation accuracy while
using fewer parameters and faster computation.

1 Introduction

The market size for autonomous driving technology is on the rise [2]. As more and more commercial
vehicles are being released with driving assistant skills [3], automating traffic sign classification may
be able to prevent some accidents resulting from drivers’ inability to see and follow such signs at all
times. Major obstacles in detecting and recognizing traffic signs include lighting conditions due to
weather and time of the day, low-quality image at high speeds, obstruction by other objects as shown
in Figure 1.

In general, traffic sign recognition includes two stages: traffic sign detection and classification.
This paper focuses on the traffic sign classification stage. We are proposing an approach using
AutoAugment and Spatial Transformer to handle the illumination and visibility challenges for a more
robust classification than previous methods.

Figure 1: Various real-life complexities in traffic sign images [1].

2 Related Work

Support vector machine (SVM) [4] and convolutional neural networks (CNNs) [5] are popular options
in traffic sign classification. A combination of SVM and CNNs has also been shown to be effective
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[6]. As traditional SVM-based methods require manual extraction of rich features and thus are
time-consuming, there has been a shift towards CNNs [1]. These recent methods [1, 7] are generally
evaluated on the German traffic signs benchmark (GTSRB) dataset [8] by modifying ResNet, using
YUV color scheme.

Instead of manually fine-tuning parameters such as saturation and brightness, we use AutoAugment
to automate the data augmentation stage. By using a Spatial Transformer we will equip the network
to deal with more complex situations while only using 92,397 parameters, which is also a significant
reduction from previous methods given our high accuracy rate.

3 Dataset

In this paper, we use the GTSRB dataset [8] which contains 39,209 traffic sign images of 43 types
grouped into six categories (Figure 2). The number in each class ranges from 210 to 2,250 (Figure 3).
The size of images in the dataset varies between 15× 15 and 250× 250 pixels.

Figure 2: Six categories of traffic signs sample images [9].

Figure 3: The number of traffic sign photos in 43 classes.

4 Methodology

4.1 Data Preparation

Because the size of images varies, we either down-sampled or up-sampled to 32× 32, which is the
minimum size at which most humans can identify most of the types of traffic sign photos. Additionally,
as shown in Figure 3), the number of photos in each class ranges from 210 to 2,250, so some classes
lack enough data. Thus, we randomly perturb images according to the following factors initially
during the data preparation:

• Scale (range of cropped origin size is between 0.9 and 1.1)
• Ratio (range of the cropped origin aspect ratio cropped is between 0.75 and 1.33)
• Rotation (-15 to 15 degrees)
• Brightness (PyTorch brightness factor 0.5)
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• Contrast (PyTorch contrast factor 0.5)
• Saturation (PyTorch saturation factor 0.5)
• Hue (PyTorch hue factor 0.1)

This is our initial effort to make our model more robust before our experiments.

We split the training data into our training set and validation set into 80% and 20% respectively. The
training set includes 31,367 images, while the validation set has 7,842 images.

4.2 Architecture

We use the neural network in the official PyTorch tutorial [10] as the baseline network.

After experiments and iteration, our final network architecture is shown in Figure 4. The network
layer type with output shape and number of parameters can be found in Appendix A.

Figure 4: The architecture of our network.

As our loss function, we use categorical cross-entropy in the following form:

Loss = −
N∑

i=1

yi · log ŷi

where ŷi is the i-th scalar value in the model output, yi is the corresponding target value, and N is
the number of scalar values in the model output.

5 Experiments and Results

5.1 Hyperparameters

Learning rate: To speed up our training, the first experiment we did was finding the better learning
rate. When training a model, allowing the learning rate to vary helped reduce the overall training
time and improve the numerical optimal solution. We used Adaptive Moment Estimation (Adam) as
our optimizer. For learning rate, we tested 0.1, 0.01, 0.001, and 0.0001. When the learning rate is 0.1
or 0.01, our cost function does not converge to an optimal solution or diverge. 0.0001 cause slows
down the training too much, which makes us unable to test other factors efficiently. 0.001 is the best
option we found.
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Batch size: As the batch size is preferably greater than the number of image classes, which is 43
in our case, to ensure maximum hardware usage and thus a lower training time, we initially set the
batch-size 512, which is the highest possible. However, in our ResNet experiments, this batch size
caused out-of-memory issues. Thus, to be consistent, we use 128 as our batch size for all experiments.

Number of epochs: For our baseline model, we started with epoch 50 as nearly none of our metrics
improved after 50 epochs. However, as our model became more complex, it was rare to observe
overfitting, so we increased it to 200 for all final experiments and benchmarks.

5.2 Experiments

5.2.1 Wide Range of Illumination and Imbalance of the Images

During our data preparation and early experiments, around 30% of images were too dark for identifi-
cation, so we figured that using human-level Bayes error rate will not work. So we tried ResNet-50
which yielded an 99.78% accuracy. Our baseline network reached 98.53%, indicating room for bias
reduction.

We identified the top five classes causing the high error rate. We have two situations here: 1) “20
Speed”, “Attention Bikes”, “Attention Bottleneck”, “Attention Traffic Light”, consistently showed
4% lower accuracy than others, which are around 95% and 2) the accuracy of the class “Attention
Curvy” fluctuates between 95% and 100%. After checking those images, we spotted two possible
reasons for this: 1) Most of these five classes have a wide variance in illumination and 2) “20 Speed”,
“Attention Bikes”, “Attention Bottleneck”, and “Attention Curvy” lack enough data.

By changing PyTorch brightness, contrast, saturation to 0.5, and hue to 0.1, the accuracy of these
classes bumped from around 95.0% to around 98.50%, while not downgrading others.

AutoAugment: Instead of continuing manual-tuning of transform factors, we introduced AutoAug-
ment. The idea is that given a model and a target dataset, AutoAugment uses reinforcement learning
to automate the search for optimal image transformation policies, e.g., horizontal/vertical flipping,
rotation, changing color, brightness, contrast of an image, etc. Using a controller RNN, AutoAugment
samples an augmentation policy at a time. Then it trains to convergence a child network with a fixed
architecture. This gives the validation accuracy as a reward to update the controller so that it can
improve its policy generation over time. Instead of spending a large amount of time to train on our
dataset to find the best policy, we use the policy found on ImageNet as ours.

Figure 5: Image transformation results. From left to right are original images, our fine-tuned
transformation results, AutoAugment results.

As Figure 5 shows, AutoAugment results are much better for low-light images as it increases the
underexposed parts of the images while decreasing the brightness of the overexposed parts. This
further helps us increases the accuracy of the aforementioned classes from around 0.4% to around
99.0% while not downgrading others.
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5.2.2 Bias Reducing

To address our issue of high bias, we added dropout layers in our neural networks to prevent overfitting
the training data by dropping out neurons. This forces our model to avoid relying too much on a
particular set of features. As a recommendation, if n is the number of hidden units in any layer and
p is the probability of retaining a unit, a good dropout net should have at least n/p units ([11]). In
our model, we have three convolutional layers followed by three fully-connected layers. We added
the dropout layer after the second and third convolutional layers, and another one after the first
fully-connected layer. We did not apply it to other layers because we think the information in the
beginning and the end of the network is more important for the neural network. After experimentation,
we found 0.5 to be a decent dropout rate.

We added Parametric Rectified Linear Units (PReLUs) for the first two layers. This allows the neural
network to find the predetermined slope by itself. It achieves higher accuracy by improving the
network fitting with nearly zero extra computational cost and little overfitting risk.

Moreover, we added a 1 × 1 convolutional layer after the 3 × 3 convolutional layer to have non-
linearity, which allows the network to learn the more complex functions [12].

These methods helped us increase the accuracy to around 99.30%.

Spatial Transformer: As AutoAugment made inputs more complex, we added Spatial Transformer
instead of using the traffic sign coordinates in the image provided by the dataset. This was done to
enable spatial manipulation of our data within the network and to help the network learn invariance
to translation, scale, rotation, and more generic warping. As Figure 6 shows, the spatial transformer
learns to focus on the traffic sign during the training.

Figure 6: Left side are original images.
Right side are the output of the spatial transformer.

After all these experiments, our best result so far was 99.32% of the training set accuracy and 99.86%
of the validation set accuracy.

5.2.3 Comparison with ResNet

We tested ResNet-34, ResNet-50, ResNet-101, ResNet-152 with our fine-tuned transforms and
AutoAugment learned on ImageNet (Table 1) along with the baseline network and our final network.
After 200 epochs, ResNet-101 had the best validation accuracy, even higher than ResNet-152 which
is a more complex network. We observed that the training and validation accuracy of ResNet-152
was still increasing slowly at the end. So we believe that ResNet-152 needs to train longer to learn all
its parameters.

Moreover, contrary to what we expected, ResNet-34, ResNet-50, ResNet-101, and ResNet-152 have
better results with our fine-tuned transforms than with AutoAugment learned on ImageNet. First,
we rule out the reason that AutoAugment causes training and validation data mismatch because
AutoAugment provide a better result on our network and help us reach higher accuracy. Second,
when we added AutoAugment to our network, it took more epochs to find a better result. Third, after
checking accuracy plots as well as the train and validation loss, the network is not overfitting. Based
on these, we think if we train longer, it could potentially have similar or better results as the ResNet
with fine-tuned transforms.

1CPU: 2.6GHz 6-core 9th-generation Intel Core i7 processor
2GPU: NVIDIA Tesla T4

5



Table 1: Network comparison.
Train Val Time (CPU1) Time (GPU2)

ResNet w/ AutoAugment

ResNet-34 0.9890 0.9964 - -
ResNet-50 0.9855 0.9960 - -
ResNet-101 0.9900 0.9966 - -
ResNet-152 0.9887 0.9958 - -

ResNet

ResNet-34 0.9965 0.9974 (too slow) (lost)
ResNet-50 0.9946 0.9978 (too slow) 196m
ResNet-101 0.9946 0.9980 (too slow) 224m
ResNet-152 0.9905 0.9967 (too slow) 240m

Baseline network 0.994 0.9853 55m 61m
Final network 0.993 0.9986 166m 162m

It is worth mentioning that our model only has 92,397 parameters which consumes less computing
resource compared to ResNet with more than tens of millions of parameters.

5.2.4 Error Analysis

We highlighted the worst five classes in precision, recall, and F1 score for both baseline and our final
network. Both networks perform worst on “Attention Bikes”. In fact, there is only one wrong label;
however, due to the fact that “Attention Bikes” has only 54 in the validation set, the error rate was
relatively high.

In the final prediction result of our final network, there were 11 classes with only has one labeled
wrong. The rest of 32 classes had zero labeled wrong. Table 2 shows the classification comparing
results between the baseline and our final network. The detailed comparison results for all classes
can be found at Appendix B.

Table 2: Classification results.
Baseline Network Final Network

Precision Recall F1 Score Precision Recall F1 Score
Macro Average 0.9822 0.9833 0.9827 0.9985 0.9980 0.9982
Weighted Average 0.9855 0.9853 0.9854 0.9986 0.9986 0.9986
Accuracy 0.9853 0.9986

Figure 7 compares the accuracy and loss between the baseline network and our final network.

The confusion matrix (Figure 8) shows our final network performed well for all 43 traffic signs.

6 Conclusion and Future Work

In this paper, we proposed a fast and high accuracy model for traffic sign classification. The proposed
model first uses AutoAugment learned on ImageNet as our data augmentation method. Then it uses
spatial transformers to help the model learn invariance to translation, scale, rotation and generic
warping. Finally, the algorithm we proposed reached 99.86% validation accuracy. Compared to the
ResNet, our network consumes less computing resource and save more training time.

Given our network performs well on the GTSRB dataset, as a next step, we want to try a bigger size
traffic sign dataset. Once we switch to a bigger size dataset, these are some areas that we want to
continue exploring:

Fast AutoAugment: One limitation of AutoAugment is that it is computationally expensive. To speed
up the search time for effective augmentation policies, in the future we will try Fast AutoAugment
which shows comparable performance on ImageNet [13].

Residual blocks: We want to borrow the idea of residual blocks from ResNet which might help
solve the vanishing and exploding gradient problems and allow us to train deeper neural networks
without a huge loss in performance.
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Figure 7: Accuracy and loss plots. Red lines are for the baseline network, while gray lines are for the
final network.

Figure 8: Confusion matrix of the validating result
(limited labels on axis are presented due to space limit).

7 Contributions

Hongbo Miao: Research, project (network prototyping, experiment, error analysis, visualization),
paper writing (dataset, methodology, experiments and results, conclusion, appendix), slides, video.

Labib Tazwar Rahman: Research, project (experiment, error analysis), paper writing (abstract,
introduction, related work, future work, appendix), paper review, slides, video.

8 Code

https://github.com/stanford-cs230-traffic-sign/stanford-cs230-traffic-sign.
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A Network Layer Info

Our network layer type with output shape and number of parameters are shown in Table 3. It includes a total of
92,397 parameters.

B Classification Results

Table 4 shows the classification comparing results between the baseline network and our final network.

C Spatial Transformer

Figure 9 shows the architecture of a spatial transformer module. The input feature map U is passed to a
localization network which regresses the transformation parameters θ. The regular spatial grid G over V is
transformed to the sampling grid Tθ(G), which is applied to U producing the warped output feature map V
([14]).

For our experiments, we use align_corners = False on functions affine_grid and grid_sample functions.
It would allow both functions to be agnostic to the size of the sampled image when we are doing affine
transformation When align_corners = True, pixels are regarded as a grid of points where all the points at the
corners are aligned. When align_corners = False, pixels are regarded as 1x1 areas where area boundaries,
rather than their centers, are aligned (Figure 10).
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Table 3: Our network layer type with output shape and number of parameters.
Layer Output Shape Param #

Conv2d-1 [-1, 8, 26, 26] 1,184
MaxPool2d-2 [-1, 8, 13, 13] 0

ReLU-3 [-1, 8, 13, 13] 0
Conv2d-4 [-1, 16, 9, 9] 3,216

MaxPool2d-5 [-1, 16, 4, 4] 0
ReLU-6 [-1, 16, 4, 4] 0
Linear-7 [-1, 84] 21,588
ReLU-8 [-1, 84] 0
Linear-9 [-1, 6] 510

Conv2d-10 [-1, 8, 28, 28] 608
PReLU-11 [-1, 8, 28, 28] 8
Conv2d-12 [-1, 8, 28, 28] 72

BatchNorm2d-13 [-1, 8, 28, 28] 16
PReLU-14 [-1, 8, 28, 28] 8

Dropout2d-15 [-1, 8, 28, 28] 0
MaxPool2d-16 [-1, 8, 14, 14] 0

Conv2d-17 [-1, 16, 10, 10] 3,216
BatchNorm2d-18 [-1, 16, 10, 10] 32

Dropout2d-19 [-1, 16, 10, 10] 0
MaxPool2d-20 [-1, 16, 5, 5] 0

Linear-21 [-1, 120] 48,120
Linear-22 [-1, 84] 10,164
Linear-23 [-1, 43] 3,655

Figure 9: A spatial transformer module.

Figure 10: align_corners = True vs align_corners = False [15].
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Table 4: Classification results.
The worst top 5 results for each precision, recall, and F1 score are marked as red color.

Baseline Network Final Network
Count Precision Recall F1 Score # Mislabel Precision Recall F1 Score # Mislabel

100 Speed 288 0.9825 0.9757 0.9791 7 1.0000 0.9965 0.9983 1
120 Speed 282 0.9858 0.9858 0.9858 4 1.0000 0.9965 0.9982 1
20 Speed 42 0.9512 0.9286 0.9398 3 1.0000 1.0000 1.0000 0
30 Speed 444 0.9820 0.9842 0.9831 7 1.0000 0.9977 0.9989 1
50 Speed 450 0.9800 0.9822 0.9811 8 0.9978 1.0000 0.9989 0
60 Speed 282 0.9556 0.9929 0.9739 2 0.9930 1.0000 0.9965 0
70 Speed 396 0.9949 0.9899 0.9924 4 1.0000 1.0000 1.0000 0
80 Lifted 84 0.9881 0.9881 0.9881 1 1.0000 1.0000 1.0000 0
80 Speed 372 0.9783 0.9677 0.9730 12 0.9973 0.9973 0.9973 1
Attention Bikes 54 0.9455 0.9630 0.9541 2 0.9815 0.9815 0.9815 1
Attention Bottleneck 54 0.9455 0.9630 0.9541 2 1.0000 1.0000 1.0000 0
Attention Bumpers 78 1.0000 1.0000 1.0000 0 1.0000 1.0000 1.0000 0
Attention Children 108 1.0000 0.9907 0.9953 1 1.0000 1.0000 1.0000 0
Attention Construction 300 0.9834 0.9900 0.9867 3 1.0000 1.0000 1.0000 0
Attention Curvy 66 0.9275 0.9697 0.9481 2 1.0000 0.9848 0.9924 1
Attention Deer 156 0.9745 0.9808 0.9776 3 1.0000 1.0000 1.0000 0
Attention General 240 0.9671 0.9792 0.9731 5 1.0000 0.9958 0.9979 1
Attention Left Turn 42 1.0000 0.9524 0.9756 2 1.0000 1.0000 1.0000 0
Attention Pedestrian 48 1.0000 0.9167 0.9565 4 1.0000 1.0000 1.0000 0
Attention Right Turn 72 1.0000 0.9306 0.9640 5 1.0000 1.0000 1.0000 0
Attention Slippery 102 0.9900 0.9706 0.9802 3 0.9903 1.0000 0.9951 0
Attention Snowflake 90 0.9457 0.9667 0.9560 3 1.0000 0.9889 0.9944 1
Attention Traffic Light 120 0.9573 0.9333 0.9451 8 1.0000 0.9917 0.9958 1
Give Way 432 0.9931 0.9931 0.9931 3 0.9977 1.0000 0.9988 0
Lifted General 48 0.9796 1.0000 0.9897 0 1.0000 1.0000 1.0000 0
Lifted No Overtaking General 48 1.0000 0.9792 0.9895 1 1.0000 1.0000 1.0000 0
Lifted No Overtaking Trucks 48 0.9796 1.0000 0.9897 0 1.0000 1.0000 1.0000 0
No Overtaking General 294 0.9898 0.9864 0.9881 4 1.0000 1.0000 1.0000 0
No Overtaking Trucks 402 0.9925 0.9925 0.9925 3 1.0000 1.0000 1.0000 0
No Way General 126 0.9688 0.9841 0.9764 2 1.0000 1.0000 1.0000 0
No Way One Way 222 1.0000 0.9865 0.9932 3 1.0000 0.9955 0.9977 1
No Way Trucks 84 0.9880 0.9762 0.9820 2 1.0000 1.0000 1.0000 0
Right Of Way Crossing 264 0.9776 0.9924 0.9850 2 0.9925 1.0000 0.9962 0
Right Of Way General 420 0.9929 0.9952 0.9941 2 1.0000 1.0000 1.0000 0
Stop 156 0.9936 1.0000 0.9968 0 1.0000 1.0000 1.0000 0
Turn Circle 72 0.9600 1.0000 0.9796 0 1.0000 1.0000 1.0000 0
Turn Left 84 0.9881 0.9881 0.9881 1 0.9882 1.0000 0.9941 0
Turn Left Down 60 1.0000 0.9833 0.9916 1 1.0000 1.0000 1.0000 0
Turn Right 138 1.0000 0.9783 0.9890 3 1.0000 1.0000 1.0000 0
Turn Right Down 414 0.9928 0.9928 0.9928 3 0.9976 1.0000 0.9988 0
Turn Straight 240 0.9958 0.9875 0.9916 3 1.0000 1.0000 1.0000 0
Turn Straight Left 42 1.0000 1.0000 1.0000 0 1.0000 1.0000 1.0000 0
Turn Straight Right 78 0.9872 0.9935 0.9935 1 1.0000 0.9872 0.9935 1
Average 182.4 2.9 0.3
Median 120 3 0
Total 7842 125 11
Macro Average 0.9822 0.9833 0.9827 0.9985 0.9980 0.9982
Weighted Average 0.9855 0.9853 0.9854 0.9986 0.9986 0.9986
Accuracy 0.9853 0.9986
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